» »

حساب مساحة الأشكال المسطحة المحددة بخطوط عبر الإنترنت. أمثلة

19.10.2019

كيفية إدراج الصيغ الرياضية على موقع على شبكة الانترنت؟

إذا كنت بحاجة إلى إضافة واحدة أو اثنتين من الصيغ الرياضية إلى صفحة ويب، فإن أسهل طريقة للقيام بذلك هي كما هو موضح في المقالة: يتم إدراج الصيغ الرياضية بسهولة على الموقع في شكل صور يتم إنشاؤها تلقائيًا بواسطة Wolfram Alpha . بالإضافة إلى البساطة، ستساعد هذه الطريقة العالمية في تحسين ظهور الموقع في محركات البحث. لقد كان يعمل لفترة طويلة (وأعتقد أنه سيعمل إلى الأبد)، لكنه عفا عليه الزمن بالفعل من الناحية الأخلاقية.

إذا كنت تستخدم الصيغ الرياضية بانتظام على موقعك، فإنني أوصيك باستخدام MathJax - وهي مكتبة JavaScript خاصة تعرض الرموز الرياضية في متصفحات الويب باستخدام علامات MathML أو LaTeX أو ASCIMathML.

هناك طريقتان لبدء استخدام MathJax: (1) باستخدام رمز بسيط، يمكنك توصيل البرنامج النصي MathJax بسرعة بموقعك على الويب، والذي سيتم تحميله تلقائيًا من خادم بعيد في الوقت المناسب (قائمة الخوادم)؛ (2) قم بتنزيل البرنامج النصي MathJax من خادم بعيد إلى الخادم الخاص بك وقم بتوصيله بجميع صفحات موقعك. الطريقة الثانية - الأكثر تعقيدًا وتستغرق وقتًا طويلاً - ستعمل على تسريع تحميل صفحات موقعك، وإذا أصبح خادم MathJax الأصلي غير متاح مؤقتًا لسبب ما، فلن يؤثر ذلك على موقعك بأي شكل من الأشكال. ورغم هذه المزايا إلا أنني اخترت الطريقة الأولى لأنها أبسط وأسرع ولا تتطلب مهارات فنية. اتبع مثالي، وفي 5 دقائق فقط ستتمكن من استخدام جميع ميزات MathJax على موقعك.

يمكنك توصيل البرنامج النصي لمكتبة MathJax من خادم بعيد باستخدام خيارين للتعليمات البرمجية مأخوذة من موقع MathJax الرئيسي أو من صفحة الوثائق:

يجب نسخ أحد خيارات التعليمات البرمجية هذه ولصقها في التعليمات البرمجية لصفحة الويب الخاصة بك، ويفضل أن يكون ذلك بين العلامات و/أو بعد العلامة مباشرة. وفقًا للخيار الأول، يتم تحميل MathJax بشكل أسرع ويبطئ الصفحة بشكل أقل. لكن الخيار الثاني يقوم تلقائيًا بمراقبة وتحميل أحدث إصدارات MathJax. إذا قمت بإدراج الرمز الأول، فسوف تحتاج إلى تحديثه بشكل دوري. إذا قمت بإدخال الكود الثاني، فسيتم تحميل الصفحات بشكل أبطأ، لكنك لن تحتاج إلى مراقبة تحديثات MathJax باستمرار.

أسهل طريقة للاتصال بـ MathJax هي في Blogger أو WordPress: في لوحة تحكم الموقع، أضف أداة مصممة لإدراج كود JavaScript لجهة خارجية، وانسخ الإصدار الأول أو الثاني من كود التنزيل الموضح أعلاه، ثم ضع الأداة في مكان أقرب إلى بداية القالب (بالمناسبة، هذا ليس ضروريًا على الإطلاق، حيث يتم تحميل البرنامج النصي MathJax بشكل غير متزامن). هذا كل شئ. تعرف الآن على بناء الجملة الترميزي لـ MathML، وLaTeX، وASCIIMathML، وستكون جاهزًا لإدراج الصيغ الرياضية في صفحات الويب الخاصة بموقعك.

يتم إنشاء أي فراكتل وفقًا لـ قاعدة معينة، والذي يتم تطبيقه بالتتابع لعدد غير محدود من المرات. كل مرة من هذا القبيل تسمى التكرار.

الخوارزمية التكرارية لبناء إسفنجة Menger بسيطة للغاية: يتم تقسيم المكعب الأصلي ذو الجانب 1 بواسطة مستويات موازية لوجهه إلى 27 مكعبًا متساويًا. تتم إزالة مكعب مركزي واحد و 6 مكعبات مجاورة له على طول الوجوه. والنتيجة هي مجموعة تتكون من المكعبات العشرين الأصغر المتبقية. وبفعل الشيء نفسه مع كل مكعب من هذه المكعبات، نحصل على مجموعة مكونة من 400 مكعب أصغر. مواصلة هذه العملية إلى ما لا نهاية، نحصل على اسفنجة Menger.

في القسم السابقمخصصة للتحليل معنى هندسيالتكامل المحدد، لقد حصلنا على عدد من الصيغ لحساب المساحة شبه منحرف منحني:

Yandex.RTB RA-A-339285-1

S (G) = ∫ a b f (x) d x لدالة مستمرة وغير سالبة y = f (x) على الفترة [ a ; ب ] ،

S (G) = - ∫ a b f (x) d x لدالة مستمرة وغير موجبة y = f (x) على الفترة [ a ; ب ] .

هذه الصيغ قابلة للتطبيق لحلها مهام بسيطة. في الواقع، سيتعين علينا في كثير من الأحيان العمل مع شخصيات أكثر تعقيدًا. وفي هذا الصدد، سنخصص هذا القسم لتحليل خوارزميات حساب مساحة الأشكال التي تقتصر على وظائف في شكل صريح، أي. مثل y = f(x) أو x = g(y).

نظرية

دع الوظائف y = f 1 (x) و y = f 2 (x) محددة ومستمرة على الفاصل الزمني [ a ; b ] و f 1 (x) ≥ f 2 (x) لأي قيمة x من [ a ; ب ] . ثم صيغة حساب مساحة الشكل G، المحصورة بالخطوط x = a، x = b، y = f 1 (x) و y = f 2 (x) ستبدو هكذا S (G) = ∫ أ ب و 2 (س) - و 1 (س) د س .

سيتم تطبيق صيغة مماثلة على مساحة الشكل الذي يحده الخطوط y = c و y = d و x = g 1 (y) و x = g 2 (y): S (G) = ∫ c d ( ز 2 (ص) - ز 1 (ص) د ص .

دليل

دعونا نلقي نظرة على ثلاث حالات تكون الصيغة صالحة لها.

في الحالة الأولى، مع الأخذ بعين الاعتبار خاصية إضافة المساحة، فإن مجموع مساحات الشكل الأصلي G وشبه المنحرف المنحني G 1 يساوي مساحة الشكل G 2. هذا يعني انه

وبالتالي، S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

يمكننا إجراء الانتقال الأخير باستخدام الخاصية الثالثة للتكامل المحدد.

وفي الحالة الثانية تكون المساواة صحيحة: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( س) - و 1 (س)) د س

سيبدو الرسم التوضيحي كما يلي:

إذا كانت كلتا الدالتين غير موجبة، نحصل على: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f) 2 (س) - و 1 (س)) د س . سيبدو الرسم التوضيحي كما يلي:

دعنا ننتقل إلى النظر في الحالة العامة عندما يتقاطع y = f 1 (x) و y = f 2 (x) مع المحور O x.

نشير إلى نقاط التقاطع كـ x i, i = 1, 2, . . . , ن - 1 . هذه النقاط تقسم المقطع [a؛ ب ] إلى أجزاء n x i - 1 ; س ط، ط = 1، 2، . . . ، ن، حيث α = س 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

لذلك،

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) د x = ∫ أ ب و 2 (س) - و 1 (س) د س

يمكننا إجراء الانتقال الأخير باستخدام الخاصية الخامسة للتكامل المحدد.

دعونا نوضح الحالة العامة على الرسم البياني.

يمكن اعتبار الصيغة S (G) = ∫ a b f 2 (x) - f 1 (x) d x مثبتة.

الآن دعنا ننتقل إلى تحليل أمثلة لحساب مساحة الأشكال المحدودة بالخطين y = f (x) و x = g (y).

سنبدأ النظر في أي من الأمثلة من خلال إنشاء رسم بياني. ستسمح لنا الصورة بتمثيل الشخصيات المعقدة كنقابات لأكثر من ذلك أرقام بسيطة. إذا كان إنشاء الرسوم البيانية والأشكال عليها أمرًا صعبًا بالنسبة لك، فيمكنك دراسة القسم الخاص بالدوال الأولية الأساسية، والتحويل الهندسي للرسوم البيانية للدوال، بالإضافة إلى إنشاء الرسوم البيانية أثناء دراسة الدالة.

مثال 1

من الضروري تحديد مساحة الشكل المحدد بالقطع المكافئ y = - x 2 + 6 x - 5 والخطوط المستقيمة y = - 1 3 x - 1 2, x = 1, x = 4.

حل

لنرسم الخطوط على الرسم البياني في نظام الإحداثيات الديكارتية.

على القطعة [ 1 ; 4 ] الرسم البياني للقطع المكافئ y = - x 2 + 6 x - 5 يقع أعلى الخط المستقيم y = - 1 3 x - 1 2. وفي هذا الصدد، للحصول على الإجابة نستخدم الصيغة التي حصلنا عليها سابقًا، وكذلك طريقة حساب التكامل المحدد باستخدام صيغة نيوتن-لايبنتز:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 س 2 - 9 2 x 1 4 = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

الجواب: س(ز) = 13

دعونا ننظر إلى مثال أكثر تعقيدا.

مثال 2

من الضروري حساب مساحة الشكل، والتي تقتصر على الخطوط y = x + 2، y = x، x = 7.

حل

في في هذه الحالةلدينا خط مستقيم واحد فقط موازي للمحور السيني. هذا هو س = 7. وهذا يتطلب منا أن نجد الحد الثاني للتكامل بأنفسنا.

دعونا نبني رسمًا بيانيًا ونرسم عليه الخطوط الواردة في بيان المشكلة.

بوجود الرسم البياني أمام أعيننا، يمكننا بسهولة تحديد أن الحد الأدنى للتكامل سيكون حدود نقطة تقاطع الرسم البياني للخط المستقيم y = x وشبه القطع المكافئ y = x + 2. للعثور على الإحداثي السيني نستخدم المعادلات:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

يتبين أن حدود نقطة التقاطع هي x = 2.

نلفت انتباهكم إلى حقيقة أن في مثال عامفي الرسم، تتقاطع الخطوط y = x + 2، y = x عند النقطة (2؛ 2)، لذلك قد تبدو مثل هذه الحسابات التفصيلية غير ضرورية. لقد أحضرنا هذا هنا حل مفصلفقط لأن هناك المزيد الحالات الصعبةالحل قد لا يكون واضحا جدا. وهذا يعني أنه من الأفضل دائمًا حساب إحداثيات تقاطع الخطوط بشكل تحليلي.

على الفاصل الزمني [ 2 ; 7] الرسم البياني للدالة y = x يقع أعلى الرسم البياني للدالة y = x + 2. دعونا نطبق الصيغة لحساب المساحة:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

الجواب: س (ز) = 59 6

مثال 3

من الضروري حساب مساحة الشكل، والتي تقتصر على الرسوم البيانية للوظائف y = 1 x و y = - x 2 + 4 x - 2.

حل

دعونا نرسم الخطوط على الرسم البياني.

دعونا نحدد حدود التكامل. للقيام بذلك، نحدد إحداثيات نقاط تقاطع الخطوط عن طريق مساواة التعبيرات 1 x و - x 2 + 4 x - 2. بشرط ألا تكون x صفراً، فإن المساواة 1 x = - x 2 + 4 x - 2 تصبح معادلة لمعادلة الدرجة الثالثة - x 3 + 4 x 2 - 2 x - 1 = 0 بمعاملات صحيحة. لتحديث ذاكرتك عن الخوارزمية الخاصة بحل مثل هذه المعادلات، يمكننا الرجوع إلى قسم "حل المعادلات التكعيبية".

جذر هذه المعادلة هو x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

بقسمة التعبير - x 3 + 4 x 2 - 2 x - 1 على ذات الحدين x - 1، نحصل على: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

يمكننا إيجاد الجذور المتبقية من المعادلة x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 د = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3؛ س 2 = 3 - 13 2 ≈ - 0 . 3

لقد وجدنا الفاصل الزمني x ∈ 1؛ 3 + 13 2، حيث يكون الشكل G موجودًا فوق الخط الأزرق وتحت الخط الأحمر. وهذا يساعدنا على تحديد مساحة الشكل:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ع 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ع 1 = 7 + 13 3 - ع 3 + 13 2

الجواب: س (ز) = 7 + 13 3 - l 3 + 13 2

مثال 4

من الضروري حساب مساحة الشكل، والتي تقتصر على المنحنيات y = x 3، y = - log 2 x + 1 ومحور الإحداثي السيني.

حل

دعونا نرسم جميع الخطوط على الرسم البياني. يمكننا الحصول على الرسم البياني للدالة y = - log 2 x + 1 من الرسم البياني y = log 2 x إذا وضعناها بشكل متماثل حول المحور x وحركناها للأعلى بمقدار وحدة واحدة. معادلة المحور السيني هي y = 0.

دعونا نحدد نقاط تقاطع الخطوط.

كما يتبين من الشكل، فإن الرسوم البيانية للوظائف y = x 3 و y = 0 تتقاطع عند النقطة (0؛ 0). يحدث هذا لأن x = 0 هو الجذر الحقيقي الوحيد للمعادلة x 3 = 0.

x = 2 هو الجذر الوحيد للمعادلة - log 2 x + 1 = 0، وبالتالي فإن الرسوم البيانية للوظائف y = - log 2 x + 1 و y = 0 تتقاطع عند النقطة (2؛ 0).

x = 1 هو الجذر الوحيد للمعادلة x 3 = - log 2 x + 1 . في هذا الصدد، تتقاطع الرسوم البيانية للوظائف y = x 3 و y = - log 2 x + 1 عند النقطة (1؛ 1). العبارة الأخيرة قد لا تكون واضحة، لكن المعادلة x 3 = - log 2 x + 1 لا يمكن أن يكون لها أكثر من جذر واحد، لأن الدالة y = x 3 تتزايد بشكل صارم، والدالة y = - log 2 x + 1 هي يتناقص بشدة.

يتضمن الحل الإضافي عدة خيارات.

الخيار 1

يمكننا أن نتخيل الشكل G كمجموع شبه منحرفين منحنيين يقعان فوق المحور السيني، يقع الأول منهما أدناه خط الوسطعلى القطعة x ∈ 0; 1، والثاني أسفل الخط الأحمر على القطعة x ∈ 1؛ 2. هذا يعني أن المساحة ستكون مساوية S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

الخيار رقم 2

يمكن تمثيل الشكل G بالفرق بين شكلين، يقع أولهما فوق المحور x وتحت الخط الأزرق على المقطع x ∈ 0؛ 2، والثاني بين الخطين الأحمر والأزرق على القطعة x ∈ 1؛ 2. هذا يتيح لنا العثور على المنطقة على النحو التالي:

S (G) = ∫ 0 2 x 3 د x - ∫ 1 2 x 3 - (- سجل 2 x + 1) د x

في هذه الحالة، للعثور على المساحة، سيتعين عليك استخدام صيغة من الصيغة S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. في الواقع، يمكن تمثيل الخطوط التي تربط الشكل كدوال للوسيطة y.

دعونا نحل المعادلات y = x 3 و - log 2 x + 1 بالنسبة لـ x:

y = x 3 ⇒ x = y 3 y = - سجل 2 x + 1 ⇒ سجل 2 x = 1 - y ⇒ x = 2 1 - y

نحصل على المساحة المطلوبة:

S (G) = ∫ 0 1 (2 1 - y - y 3) د y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

الجواب: S (G) = 1 ln 2 - 1 4

مثال 5

من الضروري حساب مساحة الشكل المحدد بالخطوط y = x، y = 2 3 x - 3، y = - 1 2 x + 4.

حل

باستخدام الخط الأحمر، نرسم الخط المحدد بواسطة الدالة y = x. نرسم الخط y = - 1 2 x + 4 باللون الأزرق، والخط y = 2 3 x - 3 باللون الأسود.

دعونا نحدد نقاط التقاطع.

لنجد نقاط تقاطع الرسوم البيانية للدوال y = x و y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 × 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 تحقق: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 ليس حل المعادلة x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 هو حل المعادلة ⇒ (4; 2) نقطة التقاطع i y = x و y = - 1 2 x + 4

لنجد نقطة تقاطع الرسوم البيانية للوظائف y = x و y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 × 1 = 45 + 729 8 = 9، × 2 45 - 729 8 = 9 4 تحقق: × 1 = 9 = 3، 2 3 × 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 هو حل المعادلة ⇒ (9 ; 3) النقطة a s y = x و y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 لا يوجد حل للمعادلة

لنوجد نقطة تقاطع الخطين y = - 1 2 x + 4 و y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1) ) نقطة التقاطع y = - 1 2 x + 4 و y = 2 3 x - 3

الطريقة رقم 1

دعونا نتخيل مساحة الشكل المطلوب كمجموع مساحات الأشكال الفردية.

ثم مساحة الشكل هي:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - س 2 3 + 3 × 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

الطريقة رقم 2

يمكن تمثيل مساحة الشكل الأصلي كمجموع شكلين آخرين.

ثم نحل معادلة الخط بالنسبة لـ x، وبعد ذلك فقط نطبق صيغة حساب مساحة الشكل.

y = x ⇒ x = y 2 خط أحمر y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 خط أسود y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

إذن المنطقة هي:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 ص + 9 2 - ص 2 د ص = = 7 4 ص 2 - 7 4 ص 1 2 + - ص 3 3 + 3 ص 2 4 + 9 2 ص 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

كما ترون، القيم هي نفسها.

الجواب: س (ز) = 11 3

نتائج

للعثور على مساحة شكل محدد بخطوط معينة، نحتاج إلى إنشاء خطوط على المستوى، وإيجاد نقاط تقاطعها، وتطبيق الصيغة للعثور على المساحة. في هذا القسم، قمنا بفحص المتغيرات الأكثر شيوعًا للمهام.

إذا لاحظت وجود خطأ في النص، فيرجى تحديده والضغط على Ctrl+Enter

المشكلة 1 (حول حساب مساحة شبه المنحرف المنحني).

في نظام الإحداثيات الديكارتي المستطيل xOy، يتم إعطاء شكل (انظر الشكل) يحده المحور x، الخطوط المستقيمة x = a، x = b (a بواسطة شبه منحرف منحني الأضلاع. مطلوب حساب مساحة المنحني الخطي شبه منحرف.
حل. تعطينا الهندسة وصفات لحساب مساحات المضلعات وبعض أجزاء الدائرة (القطاع، القطعة). باستخدام الاعتبارات الهندسية، يمكننا فقط إيجاد قيمة تقريبية للمساحة المطلوبة، وذلك على النحو التالي.

دعونا نقسم المقطع [أ؛ ب] (قاعدة شبه منحرف منحني) إلى n أجزاء متساوية؛ يتم تنفيذ هذا التقسيم باستخدام النقاط x 1، x 2، ... x k، ... x n-1. لنرسم خطوطًا مستقيمة عبر هذه النقاط، محاور متوازيةش. ثم سيتم تقسيم شبه المنحرف المنحني المحدد إلى أجزاء n، إلى أعمدة ضيقة n. مساحة شبه المنحرف بأكمله تساوي مجموع مساحات الأعمدة.

دعونا نفكر في العمود k بشكل منفصل، أي. شبه منحرف منحني قاعدته قطعة. لنستبدله بمستطيل له نفس القاعدة والارتفاع يساوي f(x k) (انظر الشكل). مساحة المستطيل تساوي \(\Delta x_k \) \cdot \Delta x_k \)، حيث \(\Delta x_k \) هو طول المقطع؛ ومن الطبيعي اعتبار المنتج الناتج قيمة تقريبية لمساحة العمود k.

إذا فعلنا الآن الشيء نفسه مع جميع الأعمدة الأخرى، فسنصل إلى النتيجة التالية: المساحة S لشبه منحرف منحني الأضلاع تساوي تقريبًا المساحة S n للشكل المتدرج المكون من n مستطيلات (انظر الشكل):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
هنا، من أجل توحيد التدوين، نفترض أن a = x 0, b = x n; \(\Delta x_0 \) - طول المقطع، \(\Delta x_1 \) - طول المقطع، وما إلى ذلك؛ في هذه الحالة، كما اتفقنا أعلاه، \(\Delta x_0 = \dots = \Delta x_(n-1) \)

لذلك، \(S \approx S_n \)، وهذه المساواة التقريبية أكثر دقة، كلما زاد n.
بحكم التعريف، يعتقد أن المساحة المطلوبة لشبه منحرف منحني الأضلاع تساوي نهاية التسلسل (S n):
$$ S = \lim_(n \to \infty) S_n $$

المشكلة الثانية (حول تحريك نقطة)
تتحرك نقطة مادية في خط مستقيم. يتم التعبير عن اعتماد السرعة على الوقت بالصيغة v = v(t). أوجد حركة نقطة خلال فترة زمنية [أ؛ ب].
حل. إذا كانت الحركة موحدة، فسيتم حل المشكلة بكل بساطة: s = vt، أي. ق = ت(ب-أ). بالنسبة للحركة غير المتساوية عليك استخدام نفس الأفكار التي بني عليها حل المشكلة السابقة.
1) تقسيم الفاصل الزمني [أ؛ ب] إلى n أجزاء متساوية.
2) اعتبر فترة زمنية وافترض أنه خلال هذه الفترة الزمنية كانت السرعة ثابتة، كما كانت في الوقت t k. لذلك نحن نفترض أن v = v(t k).
3) لنجد القيمة التقريبية لحركة النقطة خلال فترة زمنية، وسنشير إلى هذه القيمة التقريبية بالرمز s k
\(s_k = v(t_k) \Delta t_k \)
4) أوجد القيمة التقريبية للإزاحة:
\(s \approx S_n \) حيث
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) الإزاحة المطلوبة تساوي نهاية التسلسل (S n):
$$ s = \lim_(n \to \infty) S_n $$

دعونا نلخص. تم اختزال حلول المشكلات المختلفة في نفس النموذج الرياضي. العديد من المشاكل من مختلف مجالات العلوم والتكنولوجيا تؤدي إلى نفس النموذج في عملية الحل. إذا هذا نموذج رياضيتحتاج إلى دراسة خاصة.

مفهوم التكامل المحدد

دعونا نعطي وصفًا رياضيًا للنموذج الذي تم بناؤه في المسائل الثلاث المدروسة للدالة y = f(x)، المستمرة (ولكن ليس بالضرورة غير سالبة، كما تم الافتراض في المسائل قيد النظر) على الفاصل الزمني [a؛ ب]:
1) تقسيم الجزء [أ؛ ب] إلى n أجزاء متساوية؛
2) قم بتكوين المجموع $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) احسب $$ \lim_(n \to \infty) S_n $$

وقد ثبت في سياق التحليل الرياضي أن هذه النهاية موجودة في حالة الدالة المستمرة (أو المستمرة المتعددة التعريف). ويسمى التكامل المحدد للدالة y = f(x) على المقطع [a; ب] ويشار إليها على النحو التالي:
\(\int\limits_a^b f(x) dx \)
يُطلق على الرقمين a وb حدود التكامل (السفلى والعليا، على التوالي).

دعنا نعود إلى المهام التي تمت مناقشتها أعلاه. يمكن الآن إعادة كتابة تعريف المساحة الوارد في المشكلة الأولى على النحو التالي:
\(S = \int\limits_a^b f(x) dx \)
هنا S هي مساحة شبه المنحرف المنحني الموضح في الشكل أعلاه. هذا هو المعنى الهندسي للتكامل المحدد.

يمكن إعادة كتابة تعريف الإزاحة s لنقطة تتحرك في خط مستقيم بسرعة v = v(t) خلال الفترة الزمنية من t = a إلى t = b، الواردة في المشكلة 2، على النحو التالي:

صيغة نيوتن-لايبنتز

أولا، دعونا نجيب على السؤال: ما هي العلاقة بين التكامل المحدد والمشتق العكسي؟

يمكن العثور على الإجابة في المشكلة 2. من ناحية، يتم حساب إزاحة نقطة تتحرك في خط مستقيم بسرعة v = v(t) خلال الفترة الزمنية من t = a إلى t = b بواسطة الصيغة
\(S = \int\limits_a^b v(t) dt \)

من ناحية أخرى، إحداثيات نقطة متحركة هي مشتق عكسي للسرعة - دعنا نشير إليها s(t); هذا يعني أنه يتم التعبير عن الإزاحة s بالصيغة s = s(b) - s(a). ونتيجة لذلك نحصل على:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
حيث s(t) هو المشتق العكسي لـ v(t).

تم إثبات النظرية التالية في سياق التحليل الرياضي.
نظرية. إذا كانت الدالة y = f(x) متصلة على الفاصل الزمني [a; ب]، فإن الصيغة صالحة
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
حيث F(x) هو المشتق العكسي لـ f(x).

تسمى الصيغة المذكورة أعلاه عادة بصيغة نيوتن-لايبنيز تكريما للفيزيائي الإنجليزي إسحاق نيوتن (1643-1727) والفيلسوف الألماني جوتفريد ليبنيز (1646-1716)، اللذين حصلا عليها بشكل مستقل عن بعضهما البعض وفي وقت واحد تقريبا.

من الناحية العملية، بدلاً من كتابة F(b) - F(a)، يستخدمون الترميز \(\left. F(x)\right|_a^b \) (يسمى أحيانًا التعويض المزدوج)، وبالتالي، يعيدون كتابة معادلة نيوتن -صيغة لايبنتز بهذا الشكل:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

عند حساب تكامل محدد، ابحث أولاً عن المشتق العكسي، ثم قم بإجراء تعويض مزدوج.

استنادا إلى صيغة نيوتن-لايبنتز، يمكننا الحصول على خاصيتين للتكامل المحدد.

الخاصية 1. تكامل مجموع الوظائف يساوي المبلغالتكاملات:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

الخاصية 2. يمكن إخراج العامل الثابت من علامة التكامل:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

حساب مساحات الأشكال المستوية باستخدام التكامل المحدد

باستخدام التكامل، يمكنك حساب مساحات ليس فقط شبه المنحرف المنحني، ولكن أيضًا أشكال مستوية من نوع أكثر تعقيدًا، على سبيل المثال، تلك الموضحة في الشكل. الشكل P محدود بخطوط مستقيمة x = a، x = b ورسوم بيانية للوظائف المستمرة y = f(x)، y = g(x)، وعلى المقطع [a؛ ب] المتباينة \(g(x) \leq f(x) \) قائمة. ولحساب المساحة S لهذا الشكل، سنعمل على النحو التالي:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

لذا، فإن المساحة S من الشكل المحدود بخطوط مستقيمة x = a، x = b ورسوم بيانية للوظائف y = f(x)، y = g(x)، مستمرة على القطعة وهكذا لأي x من القطعة [أ؛ ب] يتم تحقيق عدم المساواة \(g(x) \leq f(x) \)، ويتم حسابها بواسطة الصيغة
\(S = \int\limits_a^b (f(x)-g(x))dx \)

جدول التكاملات غير المحددة (المشتقات العكسية) لبعض الدوال $$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^ (ن +1))(ن+1) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch ) × +C $$

أ)

حل.

أولا و اللحظة الأكثر أهميةالحلول - بناء الرسم.

لنقم بالرسم:

المعادلة ص=0يحدد المحور "س"؛

- س=-2و س = 1- مستقيم، موازي للمحور الوحدة التنظيمية؛

- ص=س 2 +2 -قطع مكافئ، فروعه متجهة نحو الأعلى، رأسه عند النقطة (0؛2).

تعليق. لبناء القطع المكافئ، يكفي العثور على نقاط تقاطعه مع محاور الإحداثيات، أي. وضع س = 0العثور على التقاطع مع المحور الوحدة التنظيميةواتخاذ القرار بناء على ذلك معادلة من الدرجة الثانية، أوجد التقاطع مع المحور أوه .

يمكن العثور على قمة القطع المكافئ باستخدام الصيغ:

يمكنك أيضًا إنشاء خطوط نقطة بنقطة.

على الفاصل الزمني [-2;1] الرسم البياني للوظيفة ص=س 2 +2تقع فوق المحور ثور، لهذا السبب:

إجابة: س=9 وحدات مربعة

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

ماذا تفعل إذا كان شبه منحرف منحني يقع تحت المحور أوه؟

ب) احسب مساحة الشكل المحدد بالخطوط ص=-ه س , س = 1وتنسيق المحاور.

حل.

دعونا نجعل الرسم.

إذا كان شبه منحرف منحني يقع بالكامل تحت المحور أوه , ثم يمكن العثور على مساحتها باستخدام الصيغة:

إجابة: ق=(ه-1)وحدات مربعة "1.72 وحدة مربعة

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

من الناحية العملية، غالبًا ما يقع الشكل في كل من النصف العلوي والسفلي.

ج) أوجد مساحة الشكل المسطح المحدد بخطوط ص=2س-س 2، ص=-س.

حل.

أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ومستقيم ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية.

نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ = 0، الحد الأعلى للتكامل ب = 3 .

نبني الخطوط المعطاة: 1. القطع المكافئ - الرأس عند النقطة (1؛1)؛ تقاطع المحور أوه -النقاط (0;0) و (0;2). 2. الخط المستقيم - منصف زاويتي الإحداثيات الثانية والرابعة. والآن انتبه! إذا كان على الجزء [ أ ؛ ب] بعض الوظائف المستمرة و (خ)أكبر من أو يساوي بعض الوظائف المستمرة ز (خ)، فيمكن إيجاد مساحة الشكل المقابل باستخدام الصيغة: .


ولا يهم أين يقع الشكل - فوق المحور أو أسفل المحور، ولكن ما يهم هو الرسم البياني الأعلى (بالنسبة إلى رسم بياني آخر)، والذي هو أدناه. في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

يمكنك بناء خطوط نقطة نقطة، وتصبح حدود التكامل واضحة "بنفسها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية).

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.

على الجزء ، وفقا للصيغة المقابلة:

إجابة: س= 4.5 وحدة مربعة

تكامل محدد. كيفية حساب مساحة الشكل

دعونا ننتقل إلى النظر في تطبيقات حساب التفاضل والتكامل. سنقوم في هذا الدرس بتحليل المشكلة النموذجية والأكثر شيوعًا - وهي كيفية حساب مساحة الشكل المستوي باستخدام تكامل محدد. أخيرًا، أولئك الذين يبحثون عن المعنى في الرياضيات العليا - عسى أن يجدوه. أنت لا تعرف أبدا. في الحياة الواقعية، سيتعين عليك تقريب قطعة أرض داشا باستخدام الدوال الأولية والعثور على مساحتها باستخدام تكامل محدد.

لإتقان المادة بنجاح، يجب عليك:

1) افهم تكامل غير محددعلى الأقل بمستوى متوسط. وبالتالي، يجب على الدمى أن يتعرفوا أولاً على الدرس "لا".

2) أن تكون قادرًا على تطبيق صيغة نيوتن-لايبنتز وحساب التكامل المحدد. يمكنك إقامة علاقات ودية دافئة مع تكاملات محددة في صفحة التكامل المحدد. أمثلة على الحلول.

في الواقع، من أجل العثور على مساحة الشكل، لا تحتاج إلى الكثير من المعرفة بالتكامل غير المحدد والمحدد. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذا فهي أكثر من ذلك بكثير قضايا الساعةستكون معرفتك ومهاراتك في الرسم. في هذا الصدد، من المفيد تحديث ذاكرتك بالرسوم البيانية للوظائف الأولية الأساسية، وعلى الأقل، لتكون قادرًا على إنشاء خط مستقيم وقطع مكافئ وقطع زائد. يمكن القيام بذلك (بالنسبة للكثيرين، فمن الضروري) باستخدام المواد المنهجيةومقالات عن التحولات الهندسية للرسوم البيانية.

في الواقع، أصبح الجميع على دراية بمهمة إيجاد المساحة باستخدام التكامل المحدد منذ المدرسة، ولن نذهب أبعد من ذلك كثيرًا المنهج المدرسي. ربما لم تكن هذه المقالة موجودة على الإطلاق، لكن الحقيقة هي أن المشكلة تحدث في 99 حالة من أصل 100، عندما يعاني الطالب من مدرسة مكروهة ويتقن بحماس دورة في الرياضيات العليا.

يتم تقديم مواد ورشة العمل هذه ببساطة وبالتفصيل وبحد أدنى من النظرية.

لنبدأ بشبه منحرف منحني.

شبه المنحرف المنحني هو شكل مسطح يحده محور وخطوط مستقيمة ورسم بياني لدالة مستمرة على قطعة لا تتغير الإشارة في هذه الفترة. دع هذا الرقم يكون موجودا ليس أقلالمحور السيني:

ثم مساحة شبه المنحرف المنحني تساوي عدديا التكامل المحدد. أي تكامل محدد (موجود) له معنى هندسي جيد جدًا. في الدرس التكامل المحدد أمثلة على الحلول التي ذكرتها أن التكامل المحدد هو رقم. والآن حان الوقت لذكر شيء آخر حقيقة مفيدة. من وجهة نظر الهندسة، التكامل المحدد هو المنطقة.

أي أن تكاملًا معينًا (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. على سبيل المثال، النظر في التكامل المحدد. يحدد التكامل منحنى على المستوى الموجود فوق المحور (أولئك الذين يرغبون يمكنهم رسم رسم)، والتكامل المحدد نفسه عددي يساوي المساحةشبه منحرف منحني المقابلة.

مثال 1

هذا هو بيان مهمة نموذجية. النقطة الأولى والأكثر أهمية في القرار هي الرسم. علاوة على ذلك، يجب أن يتم بناء الرسم بشكل صحيح.

عند إنشاء رسم، أوصي بالترتيب التالي: أولاً، من الأفضل إنشاء جميع الخطوط المستقيمة (إن وجدت) وعندها فقط – القطع المكافئة، القطع الزائدة، والرسوم البيانية للوظائف الأخرى. من الأكثر ربحية إنشاء الرسوم البيانية للوظائف بشكل نقطي، ويمكن العثور على تقنية البناء النقطي في المواد المرجعية للرسوم البيانية وخصائص الوظائف الأولية. هناك يمكنك أيضًا العثور على مادة مفيدة جدًا لدرسنا - كيفية بناء القطع المكافئ بسرعة.

في هذه المشكلة، قد يبدو الحل هكذا.
لنرسم الرسم (لاحظ أن المعادلة تحدد المحور):


لن أقوم بتظليل شبه المنحرف المنحني، فمن الواضح هنا ما هي المنطقة التي نتحدث عنها. ويستمر الحل هكذا:

في المقطع، يقع الرسم البياني للدالة فوق المحور، وبالتالي:

إجابة:

من يواجه صعوبات في حساب التكامل المحدد وتطبيق صيغة نيوتن-لايبنتز ، راجع محاضرة التكامل المحدد. أمثلة على الحلول.

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، نحسب عدد الخلايا في الرسم "بالعين" - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 2

حساب مساحة الشكل الذي يحده الخطوط، و، والمحور

هذا مثال لك لحله بنفسك. الحل الكاملوالإجابة في نهاية الدرس.

ماذا تفعل إذا كان شبه منحرف منحني يقع تحت المحور؟

مثال 3

احسب مساحة الشكل المحدد بالخطوط ومحاور الإحداثيات.

الحل: لنقم بالرسم:

إذا كان شبه منحرف منحني يقع تحت المحور (أو، وفقا ل على الأقل, ليس أعلىالمحور المحدد)، فيمكن إيجاد مساحتها باستخدام الصيغة:
في هذه الحالة:

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط .

الحل: أولا تحتاج إلى رسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ والخط المستقيم. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل هو الحد الأعلى للتكامل.
ومن الأفضل، إن أمكن، عدم استخدام هذه الطريقة.

إن بناء الخطوط نقطة تلو الأخرى أكثر ربحية وأسرع بكثير، وتصبح حدود التكامل واضحة "في حد ذاتها". تمت مناقشة تقنية البناء النقطي لمختلف الرسوم البيانية بالتفصيل في الرسوم البيانية المساعدة وخصائص الوظائف الأولية. ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). وسننظر أيضًا في مثل هذا المثال.

دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

أكرر أنه عند البناء بشكل نقطي، غالبًا ما يتم اكتشاف حدود التكامل "تلقائيًا".

والآن صيغة العمل: إذا كانت بعض الوظائف المستمرة في مقطع ما أكبر من أو تساوي بعض الوظائف المستمرة، فيمكن العثور على مساحة الشكل المحددة بالرسوم البيانية لهذه الوظائف والخطوط المستقيمة باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الشكل - أعلى المحور أو أسفل المحور، وبشكل تقريبي، من المهم أي رسم بياني أعلى (بالنسبة إلى رسم بياني آخر) وأي رسم بياني أقل.

في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

قد يبدو الحل المكتمل كما يلي:

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.
على المقطع حسب الصيغة المقابلة:

إجابة:

وفي الحقيقة فإن الصيغة المدرسية لمنطقة شبه المنحرف المنحني في النصف السفلي من المستوى (انظر المثال البسيط رقم 3) هي حالة خاصةالصيغ . بما أن المحور محدد بالمعادلة، ويقع الرسم البياني للدالة ليس أعلىالمحاور إذن

والآن بعض الأمثلة للحل الخاص بك

مثال 5

مثال 6

أوجد مساحة الشكل المحدد بالخطوط .

عند حل المسائل التي تتضمن حساب المساحة باستخدام تكامل محدد، تحدث أحيانًا حادثة مضحكة. تم الرسم بشكل صحيح، وكانت الحسابات صحيحة، ولكن بسبب الإهمال... تم العثور على مساحة الشكل الخطأ، وهذا هو بالضبط كيف أخطأ خادمك المتواضع عدة مرات. هنا حالة من الحياة الحقيقية:

مثال 7

احسب مساحة الشكل المحدد بالخطوط , , .

الحل: أولاً، لنرسم:

...آه، الرسم كان سيئًا، ولكن يبدو أن كل شيء واضح.

الشكل الذي نحتاج إلى إيجاد مساحته مظلل باللون الأزرق (انظر بعناية إلى الحالة - كيف أن الشكل محدود!). لكن من الناحية العملية، وبسبب عدم الانتباه، غالبًا ما ينشأ "خلل" حيث تحتاج إلى العثور على مساحة الشكل المظلل أخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين. حقًا:

1) يوجد في الجزء الموجود أعلى المحور رسم بياني لخط مستقيم؛

2) يوجد في المقطع الموجود فوق المحور رسم بياني للقطع الزائد.

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

إجابة:

دعنا ننتقل إلى مهمة أخرى ذات معنى.

مثال 8

حساب مساحة الشكل الذي يحده الخطوط،
لنعرض المعادلات في صورة "مدرسة" ونرسم نقطة بنقطة:

ومن الرسم يتضح أن الحد الأعلى لدينا هو "جيد": .
ولكن ما هو الحد الأدنى؟! من الواضح أن هذا ليس عددا صحيحا، ولكن ما هو؟ ربما ؟ ولكن أين هو الضمان بأن الرسم تم بدقة تامة، فقد يتبين أن... أو الجذر. ماذا لو بنينا الرسم البياني بشكل غير صحيح؟

في مثل هذه الحالات، عليك قضاء وقت إضافي وتوضيح حدود التكامل تحليليا.

دعونا نجد نقاط تقاطع الخط المستقيم والقطع المكافئ.
للقيام بذلك، نحل المعادلة:


,

حقًا، .

الحل الإضافي تافه، والشيء الرئيسي هو عدم الخلط بين البدائل والعلامات، والحسابات هنا ليست أبسط.

على الجزء ، وفقا للصيغة المقابلة:

إجابة:

حسنًا، في ختام الدرس، دعونا نلقي نظرة على مهمتين أكثر صعوبة.

مثال 9

احسب مساحة الشكل المحدد بالخطوط , ,

الحل: لنرسم هذا الشكل في الرسم.

اللعنة، لقد نسيت التوقيع على الجدول، ومعذرة، لم أرغب في إعادة الصورة. ليس يوم رسم، باختصار، اليوم هو اليوم =)

للبناء نقطة بنقطة تحتاج إلى معرفتها مظهرالجيوب الأنفية (وبشكل عام من المفيد معرفة الرسوم البيانية لجميع الوظائف الأولية)، وكذلك بعض قيم الجيب، يمكن العثور عليها في الجدول المثلثي. في بعض الحالات (كما في هذه الحالة)، من الممكن إنشاء رسم تخطيطي، حيث يجب عرض الرسوم البيانية وحدود التكامل بشكل صحيح بشكل أساسي.

لا توجد مشاكل مع حدود التكامل هنا، فهي تتبع مباشرة الشرط: يتغير "x" من صفر إلى "pi". دعونا نتخذ قرارًا آخر:

في المقطع، يقع الرسم البياني للدالة فوق المحور، وبالتالي: