» »

Ecuația unei drepte care trece prin 2 plane. Diverse ecuații de linii

19.10.2019

Ecuația unei drepte pe un plan.

După cum se știe, orice punct din plan este determinat de două coordonate într-un sistem de coordonate. Sistemele de coordonate pot fi diferite în funcție de alegerea bazei și a originii.

Definiție. Ecuația liniilor se numeşte relaţia y = f(x) între coordonatele punctelor care alcătuiesc această dreaptă.

Rețineți că ecuația unei linii poate fi exprimată parametric, adică fiecare coordonată a fiecărui punct este exprimată printr-un parametru independent t.

Un exemplu tipic este traiectoria unui punct în mișcare. În acest caz, rolul parametrului este jucat de timp.

Ecuația unei drepte pe un plan.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp, adică. A 2 + B 2  0. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte.

În funcție de valorile constantelor A, B și C, sunt posibile următoarele cazuri speciale:

    C = 0, A  0, B  0 – dreapta trece prin origine

    A = 0, B  0, C  0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

    B = 0, A  0, C  0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

    B = C = 0, A  0 – linia dreaptă coincide cu axa Oy

    A = C = 0, B  0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe vector (3, -1).

Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată.

Se obține: 3 – 2 + C = 0, deci C = -1.

Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero.

Pe plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1  x 2 și x = x 1, dacă x 1 = x 2.

Fracțiune
=k se numește pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și panta.

Dacă ecuația generală a dreptei Ax + By + C = 0 se reduce la forma:

și desemnează
, atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția dreptei printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero ( 1,  2), ale cărei componente îndeplinesc condiția A 1 + B 2 = 0 se numește vectorul de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și trecând prin punctul A(1, 2).

Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1A + (-1)B = 0, adică. A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C/A = 0.

la x = 1, y = 2 obținem C/A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С 0, atunci, împărțind la –С, obținem:
sau

, Unde

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1,
, a = -1,b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt împărțite la număr
Care e numit factor de normalizare, apoi primim

xcos + ysin - p = 0 –

ecuația normală a unei linii.

Semnul  al factorului de normalizare trebuie ales astfel încât С< 0.

p este lungimea perpendicularei coborâte de la origine la dreapta, iar  este unghiul format de această perpendiculară cu direcția pozitivă a axei Ox.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

ecuația normală a unei linii:

; cos = 12/13; sin = -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Linia dreaptă taie segmente pozitive egale pe axele de coordonate. Scrieți o ecuație pentru o dreaptă dacă aria triunghiului format din aceste segmente este de 8 cm2.

Ecuația dreptei este:
, a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 nu este potrivit în funcție de condițiile problemei.

Total:
sau x + y – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Ecuația dreptei este:
, unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2.

Două drepte sunt perpendiculare dacă k 1 = -1/k 2 .

Teorema. Linii directe Ax + Wu + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A sunt proporționali 1 = A, B 1 = B. Dacă și C 1 = C, atunci liniile coincid.

Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat

perpendicular pe această dreaptă.

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă este dat punctul M(x). 0 , y 0 ), atunci distanța până la linia dreaptă Ах + Ву + С =0 este definită ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată.

Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

.

Teorema a fost demonstrată.

Exemplu. Determinați unghiul dintre drepte: y = -3x + 7; y = 2x + 1.

k1 = -3; k 2 = 2 tg =
;  = /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Găsim: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B(6; 5), C(12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Găsim ecuația laturii AB:
; 4x = 6y – 6;

2x – 3y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b.

k = . Atunci y =
. Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație:
de unde b = 17. Total:
.

Răspuns: 3x + 2y – 34 = 0.

Geometrie analitică în spațiu.

Ecuația unei drepte în spațiu.

Ecuația unei drepte în spațiu dat un punct și

vector de direcție.

Să luăm o linie arbitrară și un vector (m, n, p), paralel cu dreapta dată. Vector numit vector ghid Drept.

Pe linie dreaptă luăm două puncte arbitrare M 0 (x 0 , y 0 , z 0) și M (x, y, z).

z

M 1

Să notăm vectorii de rază ai acestor puncte ca Și , este evident că - =
.

Deoarece vectori
Și sunt coliniare, atunci relația este adevărată
= t, unde t este un parametru.

În total, putem scrie: = + t.

Deoarece această ecuație este satisfăcută de coordonatele oricărui punct de pe linie, atunci ecuația rezultată este ecuația parametrică a unei linii.

Această ecuație vectorială poate fi reprezentată sub formă de coordonate:

Transformând acest sistem și echivalând valorile parametrului t, obținem ecuațiile canonice ale unei linii drepte în spațiu:

.

Definiție. Cosinusuri de direcție directe sunt cosinusurile de direcție ale vectorului , care poate fi calculat folosind formulele:

;

.

De aici obținem: m: n: p = cos : cos : cos.

Se numesc numerele m, n, p coeficienții de unghi Drept. Deoarece este un vector diferit de zero, atunci m, n și p nu pot fi egali cu zero în același timp, dar unul sau două dintre aceste numere pot fi egale cu zero. În acest caz, în ecuația dreptei, numărătorii corespunzători ar trebui setați egali cu zero.

Ecuația unei drepte în spațiul care trece

prin două puncte.

Dacă pe o dreaptă în spațiu notăm două puncte arbitrare M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2), atunci coordonatele acestor puncte trebuie să satisfacă ecuația dreptei. obtinut mai sus:

.

În plus, pentru punctul M 1 putem scrie:

.

Rezolvând împreună aceste ecuații, obținem:

.

Aceasta este ecuația unei drepte care trece prin două puncte din spațiu.

Ecuații generale ale unei drepte în spațiu.

Ecuația unei drepte poate fi considerată drept ecuația dreptei de intersecție a două plane.

După cum sa discutat mai sus, un plan în formă vectorială poate fi specificat prin ecuația:

+ D = 0, unde

- plan normal; - raza este vectorul unui punct arbitrar din plan.

Ecuația unei drepte care trece printr-un punct dat într-o direcție dată. Ecuația unei drepte care trece prin două puncte date. Unghiul dintre două linii drepte. Condiția de paralelism și perpendicularitate a două drepte. Determinarea punctului de intersecție a două drepte

1. Ecuația unei drepte care trece printr-un punct dat A(X 1 , y 1) într-o direcție dată, determinată de pantă k,

y - y 1 = k(X - X 1). (1)

Această ecuație definește un creion de linii care trec printr-un punct A(X 1 , y 1), care se numește centrul fasciculului.

2. Ecuația unei drepte care trece prin două puncte: A(X 1 , y 1) și B(X 2 , y 2), scris astfel:

Coeficientul unghiular al unei drepte care trece prin două puncte date este determinat de formula

3. Unghiul dintre liniile drepte AȘi B este unghiul cu care trebuie rotită prima linie dreaptă Aîn jurul punctului de intersecție al acestor linii în sens invers acelor de ceasornic până când acesta coincide cu a doua linie B. Dacă două drepte sunt date de ecuaţii cu pantă

y = k 1 X + B 1 ,

Proprietățile unei drepte în geometria euclidiană.

Un număr infinit de linii drepte pot fi trase prin orice punct.

Prin oricare două puncte necoincidente poate fi trasată o singură linie dreaptă.

Două drepte divergente dintr-un plan fie se intersectează într-un singur punct, fie sunt

paralel (urmează din precedentul).

În spațiul tridimensional, există trei opțiuni pentru poziția relativă a două linii:

  • liniile se intersectează;
  • liniile sunt paralele;
  • linii drepte se intersectează.

Drept linia— curbă algebrică de ordinul întâi: o dreaptă în sistemul de coordonate carteziene

este dat pe plan de o ecuație de gradul I (ecuație liniară).

Ecuația generală a unei drepte.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

și constantă A, B nu sunt egale cu zero în același timp. Această ecuație de ordinul întâi se numește general

ecuația unei linii drepte.În funcție de valorile constantelor A, BȘi CU Sunt posibile următoarele cazuri speciale:

. C = 0, A ≠0, B ≠ 0- o linie dreaptă trece prin origine

. A = 0, B ≠0, C ≠0 (Prin + C = 0)- linie dreaptă paralelă cu axa Oh

. B = 0, A ≠0, C ≠ 0 (Ax + C = 0)- linie dreaptă paralelă cu axa OU

. B = C = 0, A ≠0- linia dreaptă coincide cu axa OU

. A = C = 0, B ≠0- linia dreaptă coincide cu axa Oh

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice dat

condiții inițiale.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. Într-un sistem de coordonate dreptunghiular cartezian, un vector cu componente (A, B)

perpendicular pe dreapta dată de ecuație

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte care trece printr-un punct A(1, 2) perpendicular pe vector (3, -1).

Soluţie. Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x - y + C = 0. Pentru a găsi coeficientul C

Să substituim coordonatele punctului dat A în expresia rezultată, obținem: 3 - 2 + C = 0, deci

C = -1. Total: ecuația necesară: 3x - y - 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Să fie date două puncte în spațiu M 1 (x 1 , y 1 , z 1)Și M2 (x 2, y 2, z 2), Apoi ecuația unei linii,

trecând prin aceste puncte:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero. Pe

plan, ecuația dreptei scrise mai sus este simplificată:

Dacă x 1 ≠ x 2Și x = x 1, Dacă x 1 = x 2 .

Fracțiune = k numit pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Soluţie. Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și panta.

Dacă ecuația generală a dreptei Ax + Wu + C = 0 duce la:

și desemnează , atunci ecuația rezultată se numește

ecuația unei drepte cu panta k.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei linii drepte prin vectorul normal, puteți intra în sarcină

o dreaptă printr-un punct și un vector de direcție al unei drepte.

Definiție. Fiecare vector diferit de zero (α 1 , α 2), ale căror componente satisfac condiția

Aα 1 + Bα 2 = 0 numit vector de direcție al unei linii drepte.

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și care trece prin punctul A(1, 2).

Soluţie. Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției,

coeficienții trebuie să îndeplinească următoarele condiții:

1 * A + (-1) * B = 0, adică A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C / A = 0.

la x = 1, y = 2 primim C/A = -3, adică ecuația necesară:

x + y - 3 = 0

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С≠0, atunci, împărțind la -С, obținem:

sau unde

Sensul geometric al coeficienților este că coeficientul a este coordonata punctului de intersecție

drept cu axa Oh, A b- coordonata punctului de intersecție a dreptei cu axa OU.

Exemplu. Este dată ecuația generală a unei drepte x - y + 1 = 0. Găsiți ecuația acestei drepte în segmente.

C = 1, , a = -1, b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + Wu + C = 0împărțiți la număr Care e numit

factor de normalizare, apoi primim

xcosφ + ysinφ - p = 0 -ecuația normală a unei linii.

Semnul ± al factorului de normalizare trebuie ales astfel încât μ*C< 0.

R- lungimea perpendicularei coborâte de la origine la linia dreaptă,

A φ - unghiul format de aceasta perpendiculara cu directia pozitiva a axei Oh.

Exemplu. Este dată ecuația generală a dreptei 12x - 5y - 65 = 0. Necesar pentru a scrie diferite tipuri de ecuații

această linie dreaptă.

Ecuația acestei drepte în segmente:

Ecuația acestei drepte cu panta: (împarte la 5)

Ecuația unei linii:

cos φ = 12/13; sin φ= -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, linii drepte,

paralel cu axele sau trecând prin origine.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două rânduri y = k 1 x + b 1 , y = k 2 x + b 2, apoi unghiul ascuțit dintre aceste linii

va fi definit ca

Două drepte sunt paralele dacă k 1 = k 2. Două drepte sunt perpendiculare

Dacă k 1 = -1/ k 2 .

Teorema.

Direct Ax + Wu + C = 0Și A 1 x + B 1 y + C 1 = 0 paralel când coeficienții sunt proporționali

A1 = λA, B1 = λB. Dacă de asemenea С 1 = λС, apoi liniile coincid. Coordonatele punctului de intersecție a două drepte

se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe o dreaptă dată.

Definiție. Linie care trece printr-un punct M 1 (x 1, y 1)și perpendicular pe linie y = kx + b

reprezentat de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă se acordă un punct M(x 0, y 0), apoi distanța până la linia dreaptă Ax + Wu + C = 0 definit ca:

Dovada. Lasă punctul M 1 (x 1, y 1)- baza unei perpendiculare coborâte dintr-un punct M pentru un dat

direct. Apoi distanța dintre puncte MȘi M 1:

(1)

Coordonatele x 1Și la 1 poate fi găsită ca soluție a sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular

linie dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte.În funcție de valorile constantelor A, B și C, sunt posibile următoarele cazuri speciale:

C = 0, A ≠0, B ≠ 0 – dreapta trece prin origine

A = 0, B ≠0, C ≠0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

B = 0, A ≠0, C ≠ 0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

B = C = 0, A ≠0 – linia dreaptă coincide cu axa Oy

A = C = 0, B ≠0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și vector normal

Definiție.În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe (3, -1).

Soluţie. Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată, obținem: 3 – 2 + C = 0, prin urmare, C = -1 . Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este egal cu zero, numărătorul corespunzător ar trebui să fie egal cu zero. În plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1 ≠ x 2 și x = x 1, dacă x 1 = x 2.

Se numește fracția = k pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Soluţie. Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte dintr-un punct și panta

Dacă totalul Ax + Bu + C = 0, duce la forma:

și desemnează , atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția unei drepte printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero (α 1, α 2), ale cărui componente îndeplinesc condiția A α 1 + B α 2 = 0 se numește vector de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și care trece prin punctul A(1, 2).

Soluţie. Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1 * A + (-1) * B = 0, adică A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C / A = 0. pentru x = 1, y = 2 obținem C/ A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С≠0, atunci, împărțind la –С, obținem: sau

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1, , a = -1, b = 1.

Ecuația normală a unei linii

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt înmulțite cu numărul Care e numit factor de normalizare, apoi primim

xcosφ + ysinφ - p = 0 –

ecuația normală a unei linii. Semnul ± al factorului de normalizare trebuie ales astfel încât μ * C< 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

; cos φ = 12/13; sin φ= -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Linia dreaptă taie segmente pozitive egale pe axele de coordonate. Scrieți o ecuație pentru o dreaptă dacă aria triunghiului format din aceste segmente este de 8 cm2.

Soluţie. Ecuația dreptei are forma: , ab /2 = 8; ab=16; a=4, a=-4. a = -4< 0 не подходит по условию задачи. Итого: или х + у – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Soluţie. Ecuația dreptei este: , unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte pe un plan

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2. Două drepte sunt perpendiculare dacă k 1 = -1/ k 2.

Teorema. Dreptele Ax + Bу + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A 1 = λA, B 1 = λB sunt proporționali. Dacă și C 1 = λC, atunci liniile coincid. Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe o dreaptă dată

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la punct la linie

Teorema. Dacă este dat un punct M(x 0, y 0), atunci distanța până la dreapta Ax + Bу + C = 0 este determinată ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

(1)

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Exemplu. Să se determine unghiul dintre drepte: y = -3 x + 7; y = 2 x + 1.

k1 = -3; k2 = 2; tgφ = ; φ= π /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Soluţie. Găsim: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B (6; 5), C (12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Soluţie. Găsim ecuația laturii AB: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b. k = . Atunci y = . Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație: de unde b = 17. Total: .

Răspuns: 3 x + 2 y – 34 = 0.

Ecuația generală a unei drepte:

Cazuri speciale ale ecuației generale a unei linii drepte:

si daca C= 0, ecuația (2) va avea forma

Topor + De = 0,

iar linia dreaptă definită de această ecuație trece prin origine, deoarece coordonatele originii sunt X = 0, y= 0 satisface această ecuație.

b) Dacă în ecuația generală a dreptei (2) B= 0, atunci ecuația ia forma

Topor + CU= 0 sau .

Ecuația nu conține o variabilă y, iar linia dreaptă definită de această ecuație este paralelă cu axa Oi.

c) Dacă în ecuația generală a dreptei (2) A= 0, atunci această ecuație va lua forma

De + CU= 0, sau ;

ecuația nu conține o variabilă X, iar linia dreaptă pe care o definește este paralelă cu axa Bou.

Trebuie reținut: dacă o linie dreaptă este paralelă cu o axă de coordonate, atunci în ecuația sa nu există niciun termen care să conțină o coordonată cu același nume ca această axă.

d) Când C= 0 și A= 0 ecuația (2) ia forma De= 0 sau y = 0.

Aceasta este ecuația axei Bou.

d) Când C= 0 și B= 0 ecuația (2) se va scrie sub forma Topor= 0 sau X = 0.

Aceasta este ecuația axei Oi.

Poziția relativă a liniilor pe un plan. Unghiul dintre liniile drepte dintr-un plan. Condiție pentru linii paralele. Condiția de perpendicularitate a liniilor.

l 1 l 2 l 1: A 1 x + B 1 y + C 1 = 0
l 2: A 2 x + B 2 y + C 2 = 0

S 2 S 1 Vectorii S 1 și S 2 sunt numiți ghiduri pentru liniile lor.

Unghiul dintre liniile drepte l 1 și l 2 este determinat de unghiul dintre vectorii de direcție.
Teorema 1: cos al unghiului dintre l 1 si l 2 = cos(l 1 ; l 2) =

Teorema 2: Pentru ca 2 linii să fie egale este necesar și suficient:

Teorema 3: Pentru ca 2 drepte să fie perpendiculare este necesar și suficient:

L 1 l 2 ó A 1 A 2 + B 1 B 2 = 0


Ecuația planului general și cazurile sale speciale. Ecuația unui plan în segmente.

Ecuația planului general:

Ax + By + Cz + D = 0

Cazuri speciale:

1. D=0 Ax+By+Cz = 0 – planul trece prin origine

2. С=0 Ax+By+D = 0 – plan || OZ

3. B=0 Ax+Cz+d = 0 – plan || OY

4. A=0 By+Cz+D = 0 – plan || BOU

5. A=0 și D=0 By+Cz = 0 – planul trece prin OX

6. B=0 și D=0 Ax+Cz = 0 – planul trece prin OY

7. C=0 și D=0 Ax+By = 0 – planul trece prin OZ

Poziția relativă a planelor și a liniilor drepte în spațiu:

1. Unghiul dintre liniile drepte în spațiu este unghiul dintre vectorii lor de direcție.

Cos (l1; l2) = cos(S1; S2) = =

2. Unghiul dintre plane se determină prin unghiul dintre vectorii lor normali.

Cos (l1; l2) = cos(N1; N2) = =

3. Cosinusul unghiului dintre dreaptă și plan poate fi găsit prin sinul unghiului dintre vectorul direcție al dreptei și vectorul normal al planului.

4. 2 drept || în spațiu când lor || ghiduri vectoriale

5. 2 avioane || când || vectori normali

6. Conceptele de perpendicularitate a dreptelor și planelor sunt introduse în mod similar.


Întrebarea nr. 14

Diverse tipuri de ecuații ale unei drepte pe un plan (ecuația unei drepte în segmente, cu un coeficient de unghi etc.)

Ecuația unei drepte în segmente:
Să presupunem că în ecuația generală a dreptei:

1. C = 0 Ах + Ву = 0 – dreapta trece prin origine.

2. a = 0 Vu + C = 0 y =

3. b = 0 Ax + C = 0 x =

4. b=C=0 Ax = 0 x = 0

5. a=C=0 Ву = 0 у = 0

Ecuația unei drepte cu pantă:

Orice linie dreaptă care nu este egală cu axa op-amp (B nu = 0) poate fi scrisă în următoarea linie. formă:

k = tanα α – unghiul dintre linia dreaptă și linia direcționată pozitiv OX

b – punctul de intersecție al dreptei cu axa op-amp-ului

Document:

Ax+By+C = 0

Wu= -Ah-S |:B

Ecuația unei drepte bazată pe două puncte:


Întrebarea nr. 16

Limita finită a unei funcții într-un punct și pentru x→∞

Limită finală la x0:

Numărul A se numește limita funcției y = f(x) pentru x→x 0 dacă pentru orice E > 0 există b > 0 astfel încât pentru x ≠x 0 satisfacerea inegalității |x – x 0 |< б, выполняется условие |f(x) - A| < Е

Limita este indicată prin: = A

Limită finală în punctul +∞:

Numărul A se numește limita funcției y = f(x) la x → + ∞ , dacă pentru orice E > 0 există C > 0 astfel încât pentru x > C inegalitatea |f(x) - A|< Е

Limita este indicată prin: = A

Limită finală în punctul -∞:

Numărul A se numește limita funcției y = f(x) pentru x→-∞, dacă pentru orice E< 0 существует С < 0 такое, что при х < -С выполняется неравенство |f(x) - A| < Е