» »

Ингибитор микросомальных ферментов печени эритромицин. Взаимодействие лекарственных веществ на этапе образования метаболитов

03.03.2020

Ферменты (энзимы) – это специфические белки, которые участвуют в биохимических реакциях, могут ускорять или замедлять их течение. В печени вырабатывается большое количество таких соединений в связи с ее важной ролью в обмене жиров, белков и углеводов. Их активность определяется по результатам биохимического анализа крови. Такие исследования важны для оценки состояния печени и для диагностики многих заболеваний.

Что это такое?

Ферменты печени – это группа биологически активных белков, которые могут вырабатываться исключительно клетками этого органа. Они могут находиться на внутренней или наружной мембране, внутри клеток или в крови. В зависимости от роли энзимов, их разделяют на несколько категорий:

  • гидролазы – ускоряют расщепление сложных соединений на молекулы;
  • синтетазы – принимают участие в реакциях синтеза сложных биологических соединений из простых веществ;
  • трансферазы – участвуют в транспорте молекул через мембраны;
  • оксиредуктазы – являются основным условием нормального течения окислительно-восстановительных реакциях на клеточном уровне;
  • изомеразы – необходимы для процессов изменения конфигурации простых молекул;
  • лиазы – формируют дополнительные химические связи между молекулами.

ВАЖНО! На активность ферментов влияет в том числе наличие других соединений (ко-факторов). К ним относятся белки, витамины и витаминоподобные вещества.

Группы печеночных энзимов

От локализации печеночных ферментов зависит их функция в процессах клеточного обмена. Так, митохондрии участвуют в обмене энергии, гранулярная эндоплазматическая сеть синтезирует белки, гладкая – жиры и углеводы, на лизосомах находятся белки-гидролазы. Все энзимы, которые вырабатывает печень, можно обнаружить в крови.

В зависимости от того, какие функции выполняют энзимы и где они находятся в организме, их разделяют на 3 большие группы:

  • секреторные – после секреции клетками печени поступают в кровь и находятся здесь в максимальной концентрации (факторы свертываемости крови, холинэстераза);
  • индикаторные – в норме содержатся внутри клеток и высвобождаются в кровь только при их повреждении, поэтому могут служить индикаторами степени поражения печени при ее заболеваниях (АЛТ, АСТ и другие);
  • экскреторные – выводятся из печени с желчью, а повышение их уровня в крови свидетельствует о нарушении этих процессов.

Для диагностики состояния печени имеет значение каждый из энзимов. Их активность определяют при подозрении на основные патологии печени и для оценки степени повреждения печеночной ткани. Для получения более полной картины может потребоваться также диагностика пищеварительных ферментов, энзимов желудочно-кишечного тракта, поджелудочной железы и желчевыводящих путей.

Для определения печеночных ферментов необходима венозная кровь, собранная утром натощак

Ферменты, которые определяют для диагностики болезней печени

Биохимия крови – это важный этап диагностики болезней печени. Все патологические процессы в этом органе могут происходить с явлениями холестаза или цитолиза. Первый процесс представляет собой нарушение оттока желчи, которую выделяют гепатоциты. При остальных нарушениях происходит разрушение здоровых клеточных элементов с высвобождением их содержимого в кровь. По наличию и количеству энзимов печени в крови можно определить стадию болезни и характер патологических изменений в органах гепатобилиарного тракта.

Показатели холестаза

Синдром холестаза (затруднение желчеотделения) сопровождает воспалительные заболевания печени, нарушение секреции желчи и патологии желчевыводящих путей. Эти явления вызывают следующие изменения в биохимическом анализе:

  • экскреторные энзимы повышены;
  • увеличены также компоненты желчи, в том числе билирубин, желчные кислоты, холестерин и фосфолипиды.

Отток желчи может нарушаться при механическом давлении на желчные протоки (воспаленной тканью, новообразованиями, камнями), сужении их просвета и других явлениях. Комплекс характерных изменений показателей крови становится основанием для более подробного исследования состояния желчного пузыря и желчевыводящих путей.

Индикаторы цитолиза

Цитолиз (разрушение гепатоцитов) может происходить при инфекционных и незаразных гепатитах либо при отравлениях. В таком случае содержимое клеток высвобождается, а индикаторные ферменты появляются в крови. К ним относятся АЛТ (аланинаминотрансфераза), АСТ (аспартатаминотрансфераза), ЛДГ (лактатдегидрогеназа) и альдолаза. Чем выше показатели этих соединений в крови, тем обширнее степень поражения паренхимы органа.

Определение щелочной фосфатазы

Щелочная фосфатаза, которая обнаруживается в крови, может иметь не только печеночное происхождение. Небольшое количество этого фермента вырабатывается костным мозгом. О заболеваниях печени можно говорить, если происходит одновременное повышение уровня ЩФ и гамма-ГГТ. Дополнительно может обнаруживаться увеличение показателей билирубина, что говорит о патологиях желчного пузыря.

Гамма-глютамилтранспептидаза в крови

ГГТ обычно повышается с щелочной фосфатазой. Эти показатели свидетельствуют о развитии холестаза и о возможных заболеваниях желчевыводящей системы. Если этот фермент повышается изолированно, есть риск незначительного повреждения печеночной ткани на начальных стадиях алкоголизма или других отравлениях. При более серьезных патологиях наблюдается одновременное увеличение печеночных энзимов.


Окончательный диагноз можно поставить только на основании комплексного обследования, которое включает УЗИ

Трансаминазы печени (АЛТ, АСТ)

АЛТ (аланинаминотрансфераза) – это наиболее специфичный фермент печени. Он находится в цитоплазме и других органов (почек, сердца), но именно в печеночной паренхиме он присутствует в наибольшей концентрации. Его повышение в крови может указывать на различные заболевания:

  • гепатит, интоксикации с повреждением печени, цирроз;
  • инфаркт миокарда;
  • хронические заболевания сердечно-сосудистой системы, которые проявляются некрозом участков функциональной ткани;
  • травмы, повреждения или ушибы мышц;
  • тяжелая степень панкреатита – воспаления поджелудочной железы.

АСТ (аспартатдегидрогеназа) находится не только в печени. Ее также можно обнаружить в митохондриях сердца, почек и скелетных мускулов. Повышение этого фермента в крови указывает на разрушение клеточных элементов и развитие одной из патологий:

  • инфаркта миокарда (одна из наиболее распространенных причин);
  • заболеваний печени в острой или хронической форме;
  • сердечной недостаточности;
  • травм, воспаления поджелудочной железы.

ВАЖНО! В исследовании крови и определении трансфераз имеет значение соотношение между ними (коэффициент Ритиса). Если он АСТ/АЛС превышает 2, можно говорить о серьезных патологиях с обширным разрушением паренхимы печени.

Лактатдегидрогеназа

ЛДГ относится к цитолитическим ферментам. Она не является специфичной, то есть обнаруживается не только в печени. Однако ее определение имеет важное значение при диагностике желтушного синдрома. У пациентов с болезнью Жильбера (генетическим заболеванием, которое сопровождается нарушением связывания билирубина) она находится в пределах нормы. При остальных видах желтух ее концентрация повышается.

Как определяют активность веществ?

Биохимический анализ крови на ферменты печени – это одно из основных диагностических мероприятий. Для этого потребуется венозная кровь, собранная натощак в утреннее время. В течение суток перед исследованием необходимо исключить все факторы, которые могут влиять на работу печени, в том числе прием алкогольных напитков, жирных и острых блюд. В крови определяют стандартный набор ферментов:

  • АЛТ, АСТ;
  • общий билирубин и его фракции (свободный и связанный).

На активность ферментов печени могут влиять и некоторые группы медикаментов. Также они могут изменяться в норме при беременности. Перед анализом необходимо уведомить врача о приеме любых лекарств и о хронических заболеваниях любых органов в анамнезе.

Нормы для пациентов разного возраста

Для лечения болезней печени обязательно проводят полную диагностику, которая включает в том числе биохимический анализ крови. Активность ферментов исследуют в комплексе, поскольку различные показатели могут свидетельствовать о разных нарушениях. В таблице представлены нормальные значения и их колебания.

Соединение Показатели нормы
Общий белок 65-85 г/л
Холестерин 3,5-5,5 ммоль/л
Общий билирубин 8,5-20,5 мкмоль/л
Прямой билирубин 2,2-5,1 мкмоль/л
Непрямой билирубин Не более 17,1 мкмоль/л
АЛТ Для мужчин - не более 45 ед/л;

Для женщин - не более 34 ед/л

АСТ Для мужчин - не более 37 ед/л;

Для женщин - не более 30 ед/л

Коэффициент Ритиса 0,9-1,7
Щелочная фосфатаза Не более 260 ед/л
ГГТ Для мужчин - от 10 до 70 ед/л;

Для женщин - от 6 до 42 ед/л

Фермент АЛС имеет наиболее важное диагностическое значение при подозрении на гепатит, жировую дистрофию или цирроз печени. Его значения в норме меняются со временем. Это соединение измеряют в единицах на 1 литр. Нормальные показатели в разном возрасте составят:

  • у новорожденных – до 49;
  • у детей до 6 месяцев – 56 и более;
  • до года – не более 54;
  • от 1 до 3 лет – до 33;
  • от 3 до 6 лет – 29;
  • у детей более старшего возраста и у подростков – до 39.


Лекарственные средства накапливаются в паренхиме печени и могут вызывать повышение активности ее ферментов

ВАЖНО! Биохимический анализ крови – это важное, но не единственное исследование, по которому определяют состояние печени. Также проводят УЗИ и дополнительные обследования по необходимости.

Особенности определения при беременности

При нормальном течении беременности практически все показатели ферментов остаются в пределах нормы. На поздних сроках возможно незначительное повышение уровня щелочной фосфатазы в крови – явление связано с образованием этого соединения плацентой. Повышенные ферменты печени могут наблюдаться при гестозе (токсикозе) либо свидетельствуют об обострении хронических заболеваний.

Изменение активности энзимов при циррозе

Цирроз – это наиболее опасное состояние, при котором здоровая паренхима печени замещается рубцами из соединительной ткани. Эта патология не лечится, поскольку восстановление органа возможно только за счет нормальных гепатоцитов. В крови наблюдается повышение всех специфических и неспецифических ферментов, увеличение концентрации связанного и несвязанного билирубина. Уровень белка, наоборот, снижается.

Особая группа – микросомальные ферменты

Микросомальные ферменты печени – это особая группа белков, которые вырабатываются эндоплазматической сетью. Они принимают участие в реакциях обезвреживания ксенобиотиков (веществ, которые являются чужеродными для организма и могут вызывать симптомы интоксикации). Эти процессы проходят в две стадии. В результате первой из них водорастворимые ксенобиотики (с низкой молекулярной массой) выводятся с мочой. Нерастворимые вещества проходят ряд химических превращений с участием микросомальных ферментов печени, а затем элиминируются в составе желчи в тонкий отдел кишечника.

Основной элемент, который вырабатывается эндоплазматической сетью клеток печени, – цитохром Р450. Для лечения некоторых заболеваний применяют препараты-ингибиторы или индукторы микросомальных ферментов. Они оказывают влияние на активность этих белков:

  • ингибиторы – ускоряют действие ферментов, благодаря чему действующие вещества препаратов быстрее выводятся из организма (рифампицин, карбамазепин);
  • индукторы – снижают активность ферментов (флюконазол, эритромицин и другие).

ВАЖНО! Процессы индукции или ингибирования микросомальных ферментов учитывают при подборе схемы лечения любого заболевания. Одновременный прием лекарственных средств этих двух групп противопоказан.

Ферменты печени – это важный диагностический показатель для определения заболеваний печени. Однако для комплексного исследования необходимо также провести дополнительные анализы, в том числе УЗИ. Окончательный диагноз ставят на основании клинического и биохимического анализов крови, мочи и кала, УЗИ органов брюшной полости, по необходимости – рентгенографии, КТ, МРТ или других данных.

Печень - самая крупная железа пищеварительного тракта. Она выполняет в организме функцию биохимической лаборатории и играет важную роль в белковом, углеводном и липидном обменах (см. ниже). В печени синтезируются важнейшие белки плазмы крови: альбумин, фибриноген, протромбин, церуло-плазмин, трансферрин, ангиотензиноген и др. Через эти белки опосредуется участие печени в таких важных процессах, как поддержание онкотического давления, регуляция АД и объёма циркулирующей крови, свёртывание крови, метаболизм железа и др.

Важнейшая функция печени - детоксикаци-онная (или барьерная). Она имеет существенное значение для сохранения жизни организма. В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инакти-вируются лекарственные препараты и токсические вещества экзогенного происхождения, NH 3 - продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины.

Вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей организма или как источники энергии, называют чужеродными веществами, или ксенобиотиками. Эти вещества могут попадать в организм с пищей, через кожу или с вдыхаемым воздухом.

Чужеродные вещества, или ксенобиотики, делят на 2 группы:

Продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт);

Вещества бытовой химии - моющие средства, вещества для борьбы с насекомыми, парфюмерия.

Гидрофильные ксенобиотики выводятся из организма в неизменённом виде с мочой, гидрофобные могут задерживаться в тканях, связываясь с белками или образуя комплексы

с липидами клеточных мембран. Со временем накопление в клетках тканей чужеродного вещества приведёт к нарушению их функций. Для удаления таких ненужных для организма веществ в процессе эволюции выработались механизмы их детоксикации (обезвреживания) и выведения из организма.

I. МЕХАНИЗМЫ ОБЕЗВРЕЖИВАНИЯ КСЕНОБИОТИКОВ

Обезвреживание большинства ксенобиотиков происходит путём химической модификации и протекает в 2 фазы (рис. 12-1). В результате этой серии реакций ксенобиотики становятся более гидрофильными и выделяются с мочой. Вещества, более гидрофобные или обладающие большой молекулярной массой (>300 кД), чаще выводятся с жёлчью в кишечник и затем удаляются с фекалиями.

Система обезвреживания включает множество разнообразных ферментов, под действием которых практически любой ксенобиотик может быть модифицирован.

Микросомальные ферменты катализируют реакции С-гидроксилирования, N-гидроксили-рования, О-, N-, S-дезалкилирования, окислительного дезаминирования, сульфоокисления и эпоксидирования (табл. 12-1).

В мембранах ЭР практически всех тканей локализована система микросомального окисления (монооксигеназного окисления). В эксперименте при выделении ЭР из клеток мембрана распадается на части, каждая из которых образует замкнутый пузырёк - микросому, отсюда и название - микросомальное окисление. Эта система обеспечивает первую фазу обезвреживания большинства гидрофобных веществ. В метаболизме ксенобиотиков могут принимать участие ферменты почек, лёгких, кожи и ЖКТ, но наиболее активны они в печени. К группе микросомальных ферментов относят специфические оксидазы, различные гидролазы и ферменты конъюгации.

Рис. 12-1. Метаболизм и выведение ксенобиотиков из организма. RH - ксенобиотик; К - группа, используемая при конъюгации (глутатион, глюкуронил и др.); М - молекулярная масса. Из множества цитохром Р 450 -зависимых реакций на рисунке приведена только одна - схема гидроксилирования ксенобиотика. В ходе первой фазы в структуру вещества RH вводится полярная группа ОН - . Далее происходит реакция конъюгации; конъюгат в зависимости от растворимости и молекулярной массы удаляется либо почками, либо с фекалиями.

Основные функции печени

Обмен углеводов

Глюконеогенез

Синтез и распад гликогена

Обмен липидов и их производных

Синтез жирных кислот и жиров из углеводов Синтез и выведение холестерина Формирование липопротеинов Кетогенез

Синтез жёлчных кислот 25-гидроксилирование витамина D 3

Обмен белков

Синтез белков плазмы крови (включая некоторые факторы свёртывания крови) Синтез мочевины (обезвреживание аммиака)

Обмен гормонов Метаболизм и выделение стероидных гормонов Метаболизм полипептидных гормонов

Метаболизм и экскреция билирубина Депонирование

гликогена витамина А витамина В 12 железа

Лекарства и чужеродные вещества

Метаболизм и экскреция

Таблица 12-1. Возможные модификации ксенобиотиков в первой фазе обезвреживания

Вторая фаза - реакции конъюгации, в результате которых чужеродное вещество, модифицированное ферментными системами ЭР, связывается с эндогенными субстратами - глюкуроновой кислотой, серной кислотой, глицином, глутатионом. Образовавшийся конъюгат удаляется из организма.

А. МИКРОСОМАЛЬНОЕ ОКИСЛЕНИЕ

Микросомальные оксидазы - ферменты, локализованные в мембранах гладкого ЭР, функционирующие в комплексе с двумя внемитохон-дриальными ЦПЭ. Ферменты, катализирующие восстановление одного атома молекулы О 2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ. Окисление с участием монооксигеназ обычно изучают, используя препараты микросом.

1. Основные ферменты микросомальных электронтранспортных цепей

Микросомальная система не содержит растворимых в цитозоле белковых компонентов, все ферменты - мембранные белки, активные центры которых локализованы на цитоплазма-тической поверхности ЭР. Система включает несколько белков, составляющих электронт-ранспортные цепи (ЦПЭ). В ЭР существуют две такие цепи, первая состоит из двух ферментов - NADPH-Р 450 редуктазы и цитохрома Р 450 , вторая включает фермент NADH-цитохром-b 5 редукта-зу, цитохром b 5 и ещё один фермент - стеароил-КоА-десатуразу.

Электронтранспортная цепь - NADPH-Р 450 редуктаза - цитохром Р 450 . В большинстве случаев донором электронов (ē) для этой цепи служит NADPH, окисляемый NADPH-Р 450 ре-дуктазой. Фермент в качестве простетической группы содержит 2 кофермента - флавинаде-ниндинуклеотид (FAD) и флавинмононуклеотид (FMN). Протоны и электроны с NADРH переходят последовательно на коферменты NADPH-Р 450 редуктазы. Восстановленный FMN (FMNH 2) окисляется цитохромом Р 450 (см. схему ниже).

Цитохром Р 450 - гемопротеин, содержит про-стетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Название цитохром Р 450 указывает на то, что максимум поглощения комплекса цитохрома Р 450 лежит в области 450 нм.

Окисляемый субстрат (донор электронов) для NADH-цитохром Ь 5 -редуктазы - NADH (см. схему ниже). Протоны и электроны с NADH переходят на кофермент редуктазы FAD, следующим акцептором электронов служит Fe 3+ цитохрома b 5 . Цитохром b 5 в некоторых случаях может быть донором электронов (ē) для ци-тохрома Р 450 или для стеароил-КоА-десатуразы, которая катализирует образование двойных связей в жирных кислотах, перенося электроны на кислород с образованием воды (рис. 12-2).

NADH-цитохром b 5 редуктаза - двухдоменный белок. Глобулярный цитозольный домен связывает простетическую группу - кофермент FAD, а единственный гидрофобный «хвост» закрепляет белок в мембране.

Цитохром b 5 - гемсодержащий белок, который имеет домен, локализованный на поверхности мембраны ЭР, и короткий «заяко-


Рис. 12-2. Электронтранспортные цепи ЭР. RH - субстрат цитохрома Р 450 ; стрелками показаны реакции переноса электронов. В одной системе NADPH окисляется NADPH цитохром Р 450 -редуктазой, которая затем передаёт электроны на целое семейство цитохромов Р 450 . Вторая система включает в себя окисление NADH цитохром b 5 -редуктазой, электроны переходят на цитохром b 5 ; восстановленную форму цитохрома b 5 окисляет стеароил-КоА-десатураза, которая переносит электроны на О 2 .

ренный» в липидном бислое спирализованный домен.

NADH-цитохром b 5 -редуктаза и цитохром b 5 , являясь «заякоренными» белками, не фиксированы строго на определённых участках мембраны ЭР и поэтому могут менять свою локализацию.

2. Функционирование цитохрома Р 450

Известно, что молекулярный кислород в трип-летном состоянии инертен и не способен взаимодействовать с органическими соединениями. Чтобы сделать кислород реакционно-способным, необходимо его превратить в синглетный, используя ферментные системы его восстановления. К числу таковых принадлежит монок-сигеназная система, содержащая цитохром Р 450 . Связывание в активном центре цитохрома Р 450 липофильного вещества RH и молекулы кислорода повышает окислительную активность фермента. Один атом кислорода принимает 2 ē и переходит в форму О 2- . Донором электронов служит NADРH, который окисляется NADРH-цитохром Р 450 редуктазой. О 2- взаимодействует с протонами: О 2- + 2Н + → Н 2 О, и образуется вода. Второй атом молекулы кислорода включается в субстрат RH, образуя гидроксиль-ную группу вещества R-OH (рис. 12-3).

Суммарное уравнение реакции гидроксилиро-вания вещества RH ферментами микросомаль-ного окисления:

RH + O 2 + NADPH + H + → ROH + H 2 O + NADP + .

Субстратами Р 450 могут быть многие гидрофобные вещества как экзогенного (лекарственные препараты, ксенобиотики), так и эндогенного (стероиды, жирные кислоты и др.) происхождения.

Таким образом, в результате первой фазы обезвреживания с участием цитохрома Р 450 происходит модификация веществ с образованием функциональных групп, повышающих растворимость гидрофобного соединения. В результате модификации возможна потеря молекулой её биологической активности или даже формирование более активного соединения, чем вещество, из которого оно образовалось.

3. Свойства системы микросомального окисления

Важнейшие свойства ферментов микросо-мального окисления: широкая субстратная специфичность, которая позволяет обезвреживать самые разнообразные по строению вещества, и регуляция активности по механизму индукции.

Широкая субстратная специфичность. Изоформы Р 450

К настоящему времени описано около 150 генов цитохрома Р 450 , кодирующих различные изоформы фермента. Каждая из изоформ Р 450

Рис. 12-3. Транспорт электронов при монооксигеназном окислении с участием Р 450 . Связывание (1) в активном центре цитохрома Р 450 вещества RH активирует восстановление железа в геме - присоединяется первый электрон (2). Изменение валентности железа увеличивает сродство комплекса Р 450 -Fе 2+ -RH к молекуле кислорода (3). Появление в центре связывания цитохрома Р 450 молекулы О 2 ускоряет присоединение второго электрона и образование комплекса Р 450 -Fе 2 +О 2 - -RH (4). H следующем этапе (5) Fе 2+ окисляется, второй электрон присоединяется к молекуле кислорода Р 450 -Fе 3+ О 2 2- . Восстановленный атом кислорода (О 2-) связывает 2 протона, и образуется 1 молекула воды. Второй атом кислорода идёт на построение ОH-группы (6). Модифицированное вещество R-OH отделяется от фермента (7).

имеет много субстратов. Этими субстратами могут быть как эндогенные липофильные вещества, модификация которых входит в путь нормального метаболизма этих соединений, так и гидрофобные ксенобиотики, в том числе лекарства. Определённые изоформы цитохрома Р 450 участвуют в метаболизме низкомолекулярных соединений, таких как этанол и ацетон.

Регуляция активности микросомальной системы окисления

Регуляция активности микросомальной системы осуществляется на уровне транскрипции или посттранскрипционных изменений. Индукция синтеза позволяет увеличить количество ферментов в ответ на поступление или образование в организме веществ, выведение которых невозможно без участия системы микросомального окисления.

В настоящее время описано более 250 химических соединений, вызывающих индукцию микросомальных ферментов. К числу этих индукторов относят барбитураты, полицикли-

ческие ароматические углеводороды, спирты, кетоны и некоторые стероиды. Несмотря на разнообразие химического строения, все индукторы имеют ряд общих признаков; их относят к числу липофильных соединений, и они служат субстратами для цитохрома Р 450 .

Б. КОНЪЮГАЦИЯ - ВТОРАЯ ФАЗА ОБЕЗВРЕЖИВАНИЯ ВЕЩЕСТВ

Вторая фаза обезвреживания веществ - реакции конъюгации, в ходе которых происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков (табл. 12-2).

1. Участие трансфераз в реакциях конъюгации

Все ферменты, функционирующие во второй фазе обезвреживания ксенобиотиков, относят к классу трансфераз. Они характеризуются широкой субстратной специфичностью.

Таблица 12-2. Основные ферменты и метаболиты, участвующие в конъюгации

УДФ-глюкуронилтрансферазы

Локализированные в основном в ЭР ури-диндифосфат (УДФ)-глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе мик-росомального окисления (рис. 12-4).

В общем виде реакция с участием УДФ-глю-куронилтрансферазы записывается так:

RОH + УДФ-C 6 H 9 O 6 = RO-C 6 H 9 O 6 + УДФ. Сульфотрансферазы

Цитоплазматические сульфотрансферазы катализируют реакцию конъюгации, в ходе которой остаток серной кислоты (-SО 3 Н) от 3"-фосфоаденозин-5"-фосфосульфата (ФАФС) присоединяется к фенолам, спиртам или аминокислотам (рис. 12-5).

Реакция с участием сульфотрансферазы в общем виде записывается так:

RОH + ФАФ-SO 3 H = RO-SO 3 H + ФАФ.

Рис. 12-4. Уридиндифосфоглюкуроновая кислота (УДФ-C 6 H 9 O 6).

Ферменты сульфотрансферазы и УДФ-глюку-ронилтрансферазы участвуют в обезвреживании ксенобиотиков, инактивации лекарств и эндогенных биологически активных соединений.

Глутатионтрансферазы

Особое место среди ферментов, участвующих в обезвреживании ксенобиотиков, инактивации нормальных метаболитов, лекарств, занимают глутатионтрансферазы (ГТ). Глутатионтранс-феразы функционируют во всех тканях и играют важную роль в инактивации собственных метаболитов: некоторых стероидных гормонов, простагландинов, билирубина, жёлчных кислот, продуктов ПОЛ.

Известно множество изоформ ГТ с различной субстратной специфичностью. В клетке ГТ в основном локализованы в цитозоле, но имеются варианты ферментов в ядре и митохондриях. Для работы ГТ требуется глутатион (GSH) (рис. 12-6).

Глутатион - трипептид Глу-Цис-Гли (остаток глутаминовой кислоты присоединён к цистеину карбоксильной группой радикала).

Рис. 12-5. 3"-Фосфоаденозин-5"-фосфосульфат (ФАФ-SО 3 Н).

Рис. 12-6. Глутатион (GSH).

ГТ обладают широкой специфичностью к субстратам, общее количество которых превышает 3000. ГТ связывают очень многие гидрофобные вещества и инактивируют их, но химической модификации с участием глутатиона подвергаются только те, которые имеют полярную группу. То есть субстратами служат вещества, которые, с одной стороны, имеют электрофильный центр (например, ОН-группу), а с другой стороны - гидрофобные зоны. Обезвреживание, т.е. химическая модификация ксенобиотиков с участием ГТ, может осуществляться тремя различными способами:

Путём конъюгации субстрата R с глутатио-ном (GSH):

R + GSH GSRH

В результате нуклеофильного замещения:

RX + GSH GSR + НХ,

Восстановления органических пероксидов до спиртов:

R-HC-O-OH + 2 GSH R-HC-O-OH + GSSG + Н 2 О.

В реакции: ООН - гидропероксидная группа, GSSG - окисленный глутатион.

Система обезвреживания с участием ГТ и глутатиона играет уникальную роль в формировании резистентности организма к самым различным воздействиям и является наиболее важным защитным механизмом клетки. В ходе биотрансформации некоторых ксенобиотиков под действием ГТ образуются тиоэфиры (конъ-югаты RSG), которые затем превращаются в меркаптаны, среди которых обнаружены токсические продукты. Но конъюгаты GSH с большинством ксенобиотиков менее реакционно-способны и более гидрофильны, чем исходные вещества, а поэтому менее токсичны и легче выводятся из организма (рис. 12-7).

Рис. 12-7. Обезвреживание 1-хлор, 2,4-динитробен-зола с участием глутатиона.

ГТ своими гидрофобными центрами могут нековалентно связывать огромное количество липофильных соединений (физическое обезвреживание), предотвращая их внедрение в липид-ный слой мембран и нарушение функций клетки. Поэтому ГТ иногда называют внутриклеточным альбумином.

ГТ могут ковалентно связывать ксенобиотики, являющиеся сильными электролитами. Присоединение таких веществ - «самоубийство» для ГТ, но дополнительный защитный механизм для клетки.

Ацетилтрансферазы, метилтрансферазы

Ацетилтрансферазы катализируют реакции конъюгации - переноса ацетильного остатка от ацетил-КоА на азот группы -SO 2 NH 2 , например в составе сульфаниламидов. Мембранные и цитоплазматические метилтрансферазы с участием SAM метилируют группы -Р=О, -NH 2 и SH-группы ксенобиотиков.

2. Роль эпоксидгидролаз в образовании диолов

Во второй фазе обезвреживания (реакции конъюгации) принимают участие и некоторые другие ферменты. Эпоксидгидролаза (эпоксид-гидратаза) присоединяет воду к эпоксидам бензола, бензпирена и другим полициклическим углеводородам, образованным в ходе первой фазы обезвреживания, и превращает их в дио-лы (рис. 12-8). Эпоксиды, образовавшиеся при микросомальном окислении, являются канцерогенами. Они обладают высокой химической активностью и могут участвовать в реакциях неферментативного алкилирования ДНК, РНК, белков (см. раздел 16). Химические модификации этих молекул могут привести к перерождению нормальной клетки в опухолевую.

Рис. 12-8. Обезвреживание бензантрацена. Е 1 - фермент микросомальной системы; Е 2 - эпоксидгидратаза.

В. ГНИЕНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ. ОБЕЗВРЕЖИВАНИЕ И ВЫВЕДЕНИЕ ПРОДУКТОВ ГНИЕНИЯ ИЗ ОРГАНИЗМА

Аминокислоты, невсосавшиеся в клетки кишечника, используются микрофлорой толстой кишки в качестве питательных веществ. Ферменты бактерий расщепляют аминокислоты и превращают их в амины, фенолы, индол, скатол, сероводород и другие ядовитые для организма соединения. Этот процесс иногда называют гниением белков в кишечнике. В основе гниения лежат реакции декарбоксилирования и дезаминирования аминокислот.

Образование и обезвреживание n-крезола и фенола

Под действием ферментов бактерий из аминокислоты тирозина могут образовываться фенол и крезол путём разрушения боковых цепей аминокислот микробами (рис. 12-9).

Всосавшиеся продукты по воротной вене поступают в печень, где обезвреживание фенола и крезола может происходить путём конъюгации с сернокислотным остатком (ФАФС) или с глюку-роновой кислотой в составе УДФ-глюкуроната. Реакции конъюгации фенола и крезола с ФАФС

катализирует фермент сульфотрансфераза (рис. 12-10).

Конъюгация глюкуроновых кислот с фенолом и крезолом происходит при участии фермента УДФ-глюкуронилтрансферазы (рис. 12-11). Продукты конъюгации хорошо растворимы в воде и выводятся с мочой через почки. Повышение количества конъюгатов глюкуроновой кислоты с фенолом и крезолом обнаруживают в моче при увеличении продуктов гниения белков в кишечнике.

Образование и обезвреживание индола и скатола

В кишечнике из аминокислоты триптофана микроорганизмы образуют индол и скатол. Бактерии разрушают боковую цепь триптофана, оставляя нетронутой кольцевую структуру.

Индол образуется в результате отщепления бактериями боковой цепи, возможно, в виде серина или аланина (рис. 12-12).

Скатол и индол обезвреживаются в печени в 2 этапа. Сначала в результате микросомального окисления они приобретают гидроксильную группу. Так, индол переходит в индоксил, а затем вступает в реакцию конъюгации с ФАФС, образуя индоксилсерную кислоту, калиевая соль

Рис. 12-9. Катаболизм тирозина под действием бактерий. Е - бактериальные ферменты.

Рис. 12-10. Конъюгация фенола и крезола с ФАФС. Е - сульфотрансфераза.


Рис. 12-11. Участие УДФ-глюкуронилтрансферазы в обезвреживании крезола и фенола. Е - УДФ-глюку-ронилтрансфераза.

Рис. 12-12. Катаболизм триптофана под действием бактерий. Е - бактериальные ферменты.

которой получила название животного индикана

(рис. 12-13).

Обезвреживание бензойной кислоты

Синтез гиппуровой кислоты из бензойной кислоты и глицина протекает у человека и большинства животных преимущественно в печени (рис. 12-14). Скорость этой реакции отражает функциональное состояние печени.

В клинической практике используют определение скорости образования и выведения гиппуровой кислоты после введения в организм ксенобиотика бензойной кислоты (бензойно-кислого натрия) - проба Квика.

Г. СВЯЗЫВАНИЕ, ТРАНСПОРТ И ВЫВЕДЕНИЕ

КСЕНОБИОТИКОВ

В плазме крови множество как эндогенных, так и экзогенных липофильных веществ транспортируются альбумином и другими белками.

Альбумин - основной белок плазмы крови, связывающий различные гидрофобные вещества. Он может функционировать в качестве белка-переносчика билирубина, ксенобиотиков, лекарственных веществ.

Помимо альбуминов, ксенобиотики могут транспортироваться по крови в составе липопро-теинов, а также в комплексе с кислым α 1 -глико-протеином. Особенность этого гликопротеина

Рис. 12-13. Участие сульфотрансферазы в обезвреживании индола. Е - сульфотрансфераза.

Рис. 12-14. Образование гиппуровой кислоты из бензойной кислоты и глицина. Е - глицинтрансфераза.

состоит в том, что он является индуцируемым белком, участвующим в ответной реакции организма на изменения, происходящие в состоянии стресса, например, при инфаркте миокарда, воспалительных процессах; его количество в плазме увеличивается наряду с другими протеинами. Связывая ксенобиотики, кислый α 1 -гликопро-теин инактивирует их и переносит в печень, где комплекс с белком распадается, и чужеродные вещества обезвреживаются и выводятся из организма.

Участие Р-гликопротеина в выведении ксенобиотиков

Очень важный механизм выведения из клетки гидрофобных ксенобиотиков - функционирование Р-гликопротеина (транспортная АТФ-аза). Р-гликопротеин - фосфогликопротеин с молекулярной массой 170 кД, присутствующий в плазматической мембране клеток многих тканей, в частности почек и кишечника. Полипептидная цепь этого белка содержит 1280 аминокислотных остатков, образуя 12 трансмембранных доменов и два АТФ-связывающих центра (рис. 12-15).

В норме его функция состоит в экскреции ионов хлора и гидрофобных токсичных соединений из клеток.

Когда гидрофобное вещество (например, противоопухолевое лекарство) проникает в клетку, то оно удаляется из неё Р-гликопротеином с затратой энергии (рис. 12-16). Уменьшение количества лекарства в клетке снижает эффективность его применения при химиотерапии онкологических заболеваний.

Д. ИНДУКЦИЯ ЗАЩИТНЫХ СИСТЕМ

Многие ферменты, участвующие в первой и второй фазе обезвреживания, - индуцируемые белки. Ещё в древности царь Митридат знал, что если систематически принимать небольшие дозы яда, можно избежать острого отравления. «Эффект Митридата» основан на индукции определённых защитных систем (табл. 12-3).

В мембранах ЭР печени цитохрома Р 450 содержится больше (20%), чем других мембрано-связанных ферментов. Лекарственное вещество фенобарбитал активирует синтез цитохрома

Рис. 12-15. Строение Р-гликопротеина. Р-гликопротеин - интегральный белок, имеющий 12 трансмембранных доменов, пронизывающих бислой цитоплазматической мембраны. N- и С-концы белка обращены в цитозоль. Участки Р-гликопротеина на наружной поверхности мембраны гликозилированы. Область между шестым и седьмым доменами имеет центры для присоединения АТФ и аутофосфорилирования.

Рис. 12-16. Функционирование Р-гликопротеина.

Заштрихованный овал - противоопухолевое лекарство (гидрофобное вещество).

Р 450 , УДФ-глюкуронилтрансферазы и эпоксид гидролазы. Например, у животных, которым вводили индуктор фенобарбитал, увеличивается площадь мембран ЭР, которая достигает 90% всех мембранных структур клетки, и, как следствие, - увеличение количества ферментов, участвующих в обезвреживании ксенобиотиков или токсических веществ эндогенного происхождения.

При химиотерапии злокачественных процессов начальная эффективность лекарства часто постепенно падает. Более того, развивается множественная лекарственная устойчивость, т.е. устойчивость не только к этому лечебному препарату, но и целому ряду других лекарств. Это происходит потому, что противоопухолевые лекарства индуцируют синтез Р-глико-протеина, глутатионтрансферазы и глутатиона. Использование веществ, ингибирующих или активирующих синтез Р-гликопротеина, а также

ферменты синтеза глутатиона, повышает эффективность химиотерапии.

Металлы являются индукторами синтеза глутатиона и низкомолекулярного белка метал-лотионеина, имеющих SH-групггы, способные связывать их. В результате возрастает устойчивость клеток организма к ядам и лекарствам.

Повышение количества глутатионтрансфераз увеличивает способность организма приспосабливаться к возрастающему загрязнению внешней среды. Индукцией фермента объясняют отсутствие антиканцерогенного эффекта при применении ряда лекарственных веществ. Кроме того, индукторы синтеза глутатионтрансферазы - нормальные метаболиты - половые гормоны, йодтиронины и кортизол. Катехоламины через аденилатциклазную систему фосфорилируют глу-татионтрансферазу и повышают её активность.

Ряд веществ, в том числе и лекарств (например, тяжёлые металлы, полифенолы, S-алкилы глутатиона, некоторые гербициды), ингибируют глутатионтрансферазу.

ii. биотрансформация лекарственных веществ

Лекарства, поступившие в организм, проходят следующие превращения:

Всасывание;

Связывание с белками и транспорт кровью;

Взаимодействие с рецепторами;

Распределение в тканях;

Метаболизм и выведение из организма.

Механизм первого этапа (всасывание) определяется физико-химическими свойствами лекарства. Гидрофобные соединения легко проникают через мембраны простой диффузией, в то время

Таблица 12-3. Индукция систем, обеспечивающих защиту от ксенобиотиков

как лекарственные вещества, нерастворимые в липидах, проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Некоторые нерастворимые крупные частицы могут проникать в лимфатическую систему путём пиноцитоза.

Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением - гидрофобные молекулы перемещаются по крови в комплексе с альбумином, кислым α 1 -гликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку или, являясь аналогами эндогенных веществ, связываться рецепторами клеточной мембраны.

Действие на организм большинства лекарств прекращается через определённое время после их приёма. Прекращение действия может происходить потому, что лекарство выводится из организма либо в неизменённом виде - это характерно для гидрофильных соединений, либо в виде продуктов его химической модификации (биотрансформации).

А. ХАРАКТЕР ИЗМЕНЕНИЙ ПРИ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Биохимические превращения лекарственных веществ в организме человека, обеспечивающие их инактивацию и детоксикацию, являются частным проявлением биотрансформации чужеродных соединений.

В результате биотрансформации лекарственных веществ может произойти:

Инактивация лекарственных веществ, т.е. снижение их фармакологической активности;

Повышение активности лекарственных веществ;

Образование токсических метаболитов.

Инактивация лекарственных веществ

Инактивация лекарственных веществ, как и всех ксенобиотиков, происходит в 2 фазы. Первая фаза - химическая модификация под действием ферментов монооксигеназной системы ЭР. Например, лекарственное вещество барбитурат в ходе биотрансформации превращается в гидроксибарбитурат, который далее участвует в реакции конъюгации с остатком глюкуроновой кислоты. Фермент глюкуронилтрансфераза катализирует образование барбитуратглюкуронида, в качестве источника глюкуроновой кислоты используется УДФ-глюкуронил (рис. 12-17).

В первую фазу обезвреживания под действием монооксигеназ образуются реакционно-способные группы -ОН, -СООН, -NH 2 , -SH и др. Химические соединения, уже имеющие эти группы, сразу вступают во вторую фазу обезвреживания - реакции конъюгации.

Повышение активности лекарств

В качестве примера повышения активности вещества в процессе его превращений в организме можно привести образование дезметилими-прамина из имипрамина. Дезметилимипрамин обладает выраженной способностью ослаблять депрессивное состояние при психических расстройствах (рис. 12-18).

Химические превращения некоторых лекарств в организме приводят к изменению характера их активности. Например, ипразид - антидепрессант, который в результате дезалкилирования превращается в изониазид, обладающий противотуберкулёзным действием (рис. 12-19).

Образование токсических продуктов в результате реакции биотрансформации. В отдельных случаях химические превращения лекарственных средств в организме могут приводить к появлению у них токсических свойств. Так,

Рис. 12-17. Метаболизм барбитуратов в печени. Е 1 - ферменты микросомального окисления; Е 2 - глюку-ронилтрансфераза.

Рис. 12-18. Активация имипрамина в результате реакции деметилирования.

Рис. 12-19. Образование изониазида в ходе дезалкилирования ипраниазида.

Рис. 12-20. Превращение фенацетина в токсический продукт - парафенетидин.

жаропонижающее, болеутоляющее, противовоспалительное средство фенацетин превращается в парафенетидин, вызывающий гипоксию за счёт образования метгемоглобина - неактивной формы Нb (рис. 12-20).

Реакции конъюгации лекарственных веществ

Вторая фаза инактивации - конъюгация (связывание) лекарственных веществ, как подвергшихся каким-либо превращениям на первом этапе, так и нативных препаратов. К продуктам, образованным ферментами микросомального окисления, может присоединяться глицин по карбоксильной группе, глюкуроновая кислота или остаток серной кислоты - по ОН-группе, ацетильный остаток - к NH 2 -группе.

В превращениях второй фазы инактивации лекарственных веществ принимают участие эндогенные соединения, образующиеся в организме с затратой энергии SAM: (АТФ), УДФ-

глюкуронат (УТФ), Ацетил-КоА (АТФ) и др. Поэтому можно сказать, что реакции конъюгации сопряжены с использованием энергии этих макроэргических соединений.

Примером реакции конъюгации может служить глюкуронирование гидроксибарбитурата под действием глюкуронилтрансферазы, описанным ранее (см. рис. 12-17). В качестве примера О-метилирования лекарства можно привести один из этапов биотрансформации препарата метилдофа, нарушающего образование адренер-гического медиатора и применяемого в качестве гипотензивного средства (рис. 12-21).

В неизменённом виде выделяются главным образом высокогидрофильные соединения. Из липофильных веществ исключение составляют средства для ингаляционного наркоза, основная часть которых в химические реакции в организме не вступает. Они выводятся лёгкими в том же виде, в каком были введены.

Рис. 12-21. Биотрансформация лекарственного вещества (метилдофа).

Б. ФАКТОРЫ, ВЛИЯЮЩИЕ НА АКТИВНОСТЬ

ФЕРМЕНТОВ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВ

Лекарственные средства в результате химической модификации, как правило, теряют свою биологическую активность. Таким образом, эти реакции лимитируют во времени действие лекарств. При патологии печени, сопровождающейся снижением активности микросомальных ферментов, продолжительность действия ряда лекарственных веществ увеличивается.

Некоторые препараты снижают активность монооксигеназной системы. Например, левоми-цетин и бутадион ингибируют ферменты мик-росомального окисления. Антихолинэстеразные средства, ингибиторы моноаминооксидазы, нарушают функционирование фазы конъюгации, поэтому они пролонгируют эффекты препаратов, которые инактивируются этими ферментами. Кроме того, скорость каждой из реакций биотрансформации лекарственного вещества зависит от генетических, физиологических факторов и экологического состояния окружающей среды.

Возрастные особенности

Чувствительность к лекарственным средствам меняется в зависимости от возраста. Например, у новорождённых активность метаболизма лекарств в первый месяц жизни существенно отличается от взрослых. Это связано с недостаточностью многих ферментов, участвующих в биотрасформации лекарственных веществ, функции почек, повышенной проницаемостью гематоэнцефалического барьера, недоразвитием ЦНС. Так, новорождённые более чувствительны к некоторым веществам, влияющим на ЦНС (в частности, к морфину). Очень токсичен для них левомицетин; это объясняется тем, что в печени

у новорождённых малоактивны ферменты, необходимые для его биотрансформации.

В пожилом возрасте метаболизм лекарственных веществ протекает менее эффективно: снижается функциональная активность печени, нарушается скорость экскреции препаратов почками. В целом чувствительность к большинству лекарственных средств в пожилом возрасте повышена, в связи с чем их доза должна быть снижена.

Генетические факторы

Индивидуальные различия в метаболизме ряда препаратов и в реакциях на препараты объясняют генетическим полиморфизмом, т.е. существованием в популяции изоформ некоторых ферментов биотрансформации.

В ряде случаев повышенная чувствительность к лекарственным средствам может быть обусловлена наследственной недостаточностью некоторых ферментов, участвующих в химической модификации. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6-8 ч и более (в обычных условиях дитилин действует в течение 5-7 мин). Известно, что скорость ацетилирования противотуберкулёзного средства изониазида варьирует довольно широко. Выделяют лиц с быстрой и медленной метаболизирующей активностью. Считают, что у лиц с медленной инактивацией изониазида нарушена структура белков, регулирующих синтез фермента ацетилтрансферазы, обеспечивающего конъюгацию изониазида с ацетильным остатком.

Факторы окружающей среды

Существенное влияние на метаболизм лекарственных веществ в организме оказывают

также факторы окружающей среды, такие как ионизирующая радиация, температура, состав пищи и особенно различные химические вещества (ксенобиотики), в том числе и сами лекарственные вещества.

III. МЕТАБОЛИЗМ ЭТАНОЛА В ПЕЧЕНИ

Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола.

Окисление алкоголя - сложный биохимический процесс, в который вовлекаются основные метаболические процессы клетки. Превращение этанола в печени осуществляется тремя путями с образованием токсического метаболита - ацет-альдегида (рис. 12-22).

А. ОКИСЛЕНИЕ ЭТАНОЛА NAD-ЗАВИСИМОЙ АЛКОГОЛЬДЕГИДРОГЕНАЗОЙ

Основную роль в метаболизме этанола играет цинксодержащий NAD + -зависимый фермент - алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции пpoиcxoдит дегидрирование этанола, образуются ацеталь-дегид и восстановленный кофермент NADH. Алкогольдегидрогеназа катализирует обратимую реакцию, направление которой зависит от концентрации ацетальдегида и соотношения NADH/NAD + в клетке.

С 9 H 5 ОН + NAD + ↔ CH 3 CHO + NADH + H + .

Фермент алкогольдегидрогеназа - димер, состоящий из идентичных или близких по первичной структуре полипептидных цепей, кодируемых аллелями одного гена. Существуют 3 изоформы алкогольдегидрогеназы (АДГ): АДГ 1 , АДГ 2 , АДГ 3 , различающиеся по строению протомеров, локализации и активности. Для европейцев характерно присутствие изоформ АДГ 1 и АДГ 3 . У некоторых восточных народов преобладает изоформа АДГ 2 , характеризующаяся высокой активностью, это может быть причиной их повышенной чувствительности к алкоголю. При хроническом алкоголизме количество фермента в печени не увеличивается, т.е. он не является индуцируемым ферментом.

Б. ОКИСЛЕНИЕ ЭТАНОЛА ПРИ УЧАСТИИ ЦИТОХРОМ Р 450 -ЗАВИСИМОЙ МИКРОСОМАЛЬ-НОЙ ЭТАНОЛОКИСЛЯЮЩЕЙ СИСТЕМЫ

Цитохром Р 450 -зависимая микросомальная эта-нолокисляющая система (МЭОС) локализована в мембране гладкого ЭР гепатоцитов. МЭОС играет незначительную роль в метаболизме небольших количеств алкоголя, но индуцируется этанолом, другими спиртами, лекарствами типа барбитуратов и приобретает существенное значение при злоупотреблении этими веществами. Этот путь окисления этанола происходит при участии одной из изоформ Р 450 - изофермента Р 450 II Е 1 . При хроническом алкоголизме окисление этанола ускоряется на 50-70% за счёт гипертрофии ЭР и индукции ци-тохрома Р 450 II Е 1 .

C 9 H 5 OH + NADPH + Н + + О 2 → CH 3 CHO + NADP + + 2 Н 2 О.

Рис. 12-22. Метаболизм этанола. 1 - окисление этанола NAD + -зависимой алкогольдегидрогеназой (АДГ); 9 - МЭОС - микросомальная этанолокисляющая система; 3 - окисление этанола каталазой.

Кроме основной реакции, цитохром Р 450 катализирует образование активных форм кислорода (О 2 - , Н 2 О 2), которые стимулируют ПОЛ в печени и других органах (см. раздел 8).

в. окисление этанола каталазой

Второстепенную роль в окислении этанола играет каталаза, находящаяся в пероксисомах цитоплазмы и митохондрий клеток печени. Этот фермент расщепляет примерно 2% этанола, но при этом утилизирует пероксид водорода.

СН 3 СН 2 ОН + Н 2 О 2 → СН 3 СНО +2 Н 2 О.

г. метаболизм и токсичность ацетальдегида

Ацетальдегид, образовавшийся из этанола, окисляется до уксусной кислоты двумя ферментами: FAD-зависимой альдегидоксидазой и NАD + -зависимой ацетальдегиддегидрогеназой (АлДГ).

CH 3 CHO + О 2 + Н 2 О → CH 3 COOH +Н 2 О 2 .

Повышение концентрации ацетальдегида в клетке вызывает индукцию фермента альдегид-оксидазы. В ходе реакции образуются уксусная кислота, пероксид водорода и другие активные формы кислорода, что приводит к активации

Другой фермент ацетальдегиддегидрогеназа (АлДГ) окисляет субстрат при участии кофер-мента NАD + .

CH 3 CHO + Н 2 О + NAD + → CH 3 COOH + + NADH + H + .

Полученная в ходе реакции уксусная кислота активируется под действием фермента ацетил-КоА-синтетазы. Реакция протекает с использованием кофермента А и молекулы АТФ. Образовавшийся ацетил-КоА, в зависимости от соотношения АТФ/АДФ и концентрации окса-лоацетата в митохондриях гепатоцитов, может «сгорать» в ЦТК, идти на синтез жирных кислот или кетоновых тел.

В разных тканях организма человека встречаются полиморфные варианты АлДГ. Они характеризуются широкой субстратной специфичностью, разным распределением по клеткам тканей (почки, эпителий, слизистая оболочка

желудка и кишечника) и в компартментах клетки. Например, изоформа АлДГ, локализованная в митохондриях гепатоцитов, обладает более высоким сродством к ацетальдегиду, чем цито-зольная форма фермента.

Ферменты, участвующие в окислении этанола, - алкогольдегидрогеназа и АлДГ по разному распределены: в цитозоле - 80%/20% и митохондриях - 20%/80%. При поступлении больших доз алкоголя (более 2 г/кг) из-за разных скоростей окисления этанола и ацетальдегида в цитозоле резко повышается концентрация последнего. Ацетальдегид - очень реакционно-способное соединение; он неферментативно может ацетилировать SH-, NН 2 -группыбелков и других соединений в клетке и нарушать их функции. В модифицированных (ацетилиро-ванных) белках могут возникать «сшивки», нехарактерные для нативной структуры (например, в белках межклеточного матрикса - эластине и коллагене, некоторых белках хроматина и липопротеинов, формирующихся в печени). Ацетилирование ядерных, цитоплаз-матических ферментов и структурных белков приводит к снижению синтеза экспортируемых печенью в кровь белков, например альбумина, который, удерживая поддерживает коллоидно-осмотическое давление, а также участвует в транспорте многих гидрофобных веществ в крови (см. раздел 14). Нарушение функций альбумина в сочетании с повреждающим действием ацетальдегида на мембраны сопровождается поступлением в клетки по градиенту концентрации ионов натрия и воды, происходит осмотическое набухание этих клеток и нарушение их функций.

Активное окисление этанола и ацетальдегида приводит к увеличению отношения NADH/ NAD + , что снижает активность NAD + -зависи-мых ферментов в цитозоле и менее значительно в митохондриях.

Равновесие следующей реакции смещается вправо:

Дигидроксиацетонфосфат + NADH + H + ↔ Глице-рол-3-фосфат + NAD+,

Пируват + NADH + H + ↔ Лактат +NAD + .

Восстановление дигидроксиацетонфосфата, промежуточного метаболита гликолиза и глю-конеогенеза, приводит к снижению скорости

глюконеогенеза. Образование глицерол-3-фос-фата повышает вероятность синтеза жира в печени. Увеличение концентрации NADH по сравнению с NAD + (NADH>NAD +) замедляет реакцию окисления лактата, увеличивается соотношение лактат/пируват и ещё больше снижается скорость глюконеогенеза (см. раздел 7). В крови возрастает концентрация лактата, это приводит к гиперлактацидемии и лактоацидозу

(рис. 12-23).

NADH окисляется ферментом дыхательной цепи NADH-дегидрогеназой. Возникновение трансмембранного электрического потенциала на внутренней митохондриальной мембране не приводит к синтезу АТФ в полном объёме. Этому препятствует нарушение структуры внутренней мембраны митохондрий, вызванное мембранотропным действием этилового спирта

и повреждающим действием ацетальдегида на мембраны.

Можно сказать, что ацетальдегид опосредованно активирует ПОЛ, так как связывая SH-группы глутатиона, он снижает количество активного (восстановленного) глутатиона в клетке, который необходим для функционирования фермента глутатионпероксидазы (см. раздел 8), участвующего в катаболизме H 2 О 2 . Hакопление свободных радикалов приводит к активации ПОЛ мембран и нарушению структуры липидного бислоя.

На начальных стадиях алкоголизма окисление ацетил-КоА в ЦТК - основной источник энергии для клетки. Избыток ацетил-КоА в составе цитрата выходит из митохондрий, и в цитоплазме начинается синтез жирных кислот. Этот процесс, помимо АТФ, требует участия NADPH,

Рисунок 12-23. Эффекты этанола в печени. 1→2→3 - окисление этанола до ацетата и превращение его в ацетил-КоА

(1 - реакция катализируется алкогольдегидрогеназой, 2 - реакция катализируется АлДГ). Скорость образования ацетальдегида (1)часто при приёме большого количества алкоголя выше, чем скорость его окисления (9), поэтому ацетальальдегид накапливается и оказывает влияние на синтез белков (4), ингибируя его, а также понижает концентрацию восстановленного глутатиона (5), в результате чего активируется ПОЛ. Скорость глюконеогенеза (6) снижается, так как высокая концентрация NADH образованного в реакциях окисления этанола (1, 9), ингибирует глюконеогенез (6). Лактат выделяется в кровь (7), и развивается лактоацидоз. Увеличение концентрации NADH замедляет скорость ЦТК; ацетил-КоА накапливается, активируется синтез кетоновых тел (кетоз) (8). Окисление жирных кислот также замедляется (9), увеличивается синтез жира (10), что приводит к ожирению печени и гипертриацилглицеролемии.

который образуется при окислении глюкозы в пентозофосфатном цикле. Из жирных кислот и глицерол-3-фосфата образуются ТАГ, которые в составе ЛПОHП секретируются в кровь. Повышенная продукция ЛПОHП печенью приводит к гипертриацижлицеролемии. При хроническом алкоголизме снижение синтеза фосфолипидов и белков в печени, в том числе и апобелков, участвующих в формировании ЛПОHП, вызывает внутриклеточное накопление ТАГ и ожирение печени.

Однако в период острой алкогольной интоксикации, несмотря на наличие большого количества ацетил-КоА, недостаток оксало-ацетата снижает скорость образования цитрата. В этих условиях избыток ацетил-КоА идёт на синтез кетоновых тел, которые выходят в кровь. Повышение в крови концентрации лактата, ацетоуксусной кислоты и β-гидроксибутирата служит причиной метаболического ацидоза при алкогольной интоксикации.

Как уже было сказано ранее, реакция образования ацетальдегида из этанола протекает под действием алкогольдегидрогеназы. Поэтому при повышении концентрации ацетальдегида и NADH в клетках печени направление реакции меняется - образуется этанол. Этанол - мемб-ранотропное соединение, он растворяется в ли-пидном бислое мембран и нарушает их функции. Это негативно отражается на трансмембранном переносе веществ, межклеточных контактах, взаимодействиях рецепторов клетки с сигнальными молекулами. Этанол может проходить через мембраны в межклеточное пространство и кровь и далее в любую клетку организма.

д. влияние этанола и ацетальдегида на метаболизм ксенобиотиков и лекарств в печени

Характер влияния этанола на метаболизм ксенобиотиков и лекарств зависит от стадии алкогольной болезни: начальная стадия алкоголизма, хронический алкоголизм или острая форма алкогольной интоксикации.

Микросомальная этанолокисляющая система (МЭОС) наряду с метаболизмом этанола участвует в детоксикации ксенобиотиков и лекарств. На начальной стадии алкогольной болезни биотрансформация лекарственных веществ протекает более активно вследствие индукции ферментов системы. Этим объясняют феномен лекарственной «устойчивости». Однако при острой интоксикации этиловым спиртом тормозится биотрансформация лекарственных веществ. Этанол конкурирует с ксенобиотиками за связывание с цитохромом Р 450 II Е 1 , вызывая гиперчувствительность (лекарственную «неустойчивость») к некоторым принятым одновременно с ним лекарственным препаратам.

Кроме того, у людей, страдающих хроническим алкоголизмом, наблюдают избирательную индукцию изоформы Р 450 II Е 1 и конкурентное ингибирование синтеза других изоформ, принимающих участие в метаболизме ксенобиотиков и лекарств. При злоупотреблении алкоголем индуцируется также синтез глюку-ронил-трансфераз, но снижается образование УДФ-глюкуроната.

Алкогольдегидрогеназа обладает широкой субстратной специфичностью и может окислять разные спирты, в том числе и метаболиты сердечных гликозидов - дигитоксина, дигоксина и гитоксина. Конкуренция этанола с сердечными гликозидами за активный центр алкогольде-гидрогеназы приводит к снижению скорости биотрансформации этой группы лекарств и повышает опасность их побочного эффекта у лиц, принимающих большие дозы алкоголя.

Повышение концентрации ацетальдегида вызывает целый ряд нарушений в структуре белков (ацетилирование), мембран (ПОЛ), модификацию глутатиона, необходимого для одного из самых важных ферментов обезвреживания ксенобиотиков - глутатионтрансферазы и фермента антиоксидазной защиты глутатионперок-сидазы. Таким образом, представленные данные свидетельствуют, что алкогольное поражение печени сопровождается нарушением важнейшей функции этого органа - детоксикационной.

Учитывая существенную роль ферментов эндоплазматического ретикулюма в инактивации чужеродных веществ, метаболические превращения лекарственных веществ подразделяют на превращения, которые катализируются микросомальными ферментами печени (и, возможно, ферментами других тканей) и на превращения, которые катализируются ферментами, локализованными в других частях клетки (немикросомальные).

В состав микросомальных ферментов входят оксидазы со смешанными функциями (их еще называют микросомальными монооксигеназами или ферментами свободного окисления), а также различные эстеразы (глюкозо-6-фосфатаза, магний-зависимые нуклеозидфосфатазы, неспецифические эстеразы), ферменты синтеза белков, липидов, фосфолипидов, гликопротеидов, желчных кислот, наконец, ферменты, катализирующие реакции конъюгации. Из их числа в механизмах детоксикации ксенобиотиков (и в том числе лекарств) участвуют:

Оксидазы со смешанными функциями (т.е. микросомальные оксигеназы);

Эстеразы;

Ферменты конъюгации.

Таким образом микросомальные ферменты, в основном, осуществляют окисление, восстановление, гидролиз и конъюгацию ксенобиотиков (в т.ч. лекарств).

Микросомальные монооксигеназы катализируют биотрансформацию преимущественно липотропных ксенобиотиков, а ткаже эндогенных стероидов, ненасыщенных жирных кислот, простагландинов. Эти монооксигеназы, участвуя в метаболизме липотропных ядов и лекарственных веществ, катализируют такие реакции окисления, как С-гидроксилирование в алифатической цепи, в ароматическом и алициклическом кольцах, в алкильных боковых цепях, N-гидроксилирование, O-, N-, S-дезалкилирование, окислительное дезаминирование, дезамидирование и эпоксидирование.

Помимо окислительных превращений, эти ферменты катализируют реакции восстановления ароматических нитро- и азосоединений, реакции восстановительного дегалогенирования. В результате этих реакций ксенобиотики приобретают реактивные группы - -ОН, -СООН, -NН 2 , -SН и др. Образующиеся таким путем метаболиты легко вступают в реакцию конъюгации с образованием малотоксичных соединений, которые затем выводятся из организма, в основном с мочой, желчью и калом.



Микросомальные монооксигеназы представляют собой полиферментный комплекс, локализованный на гладком эндоплазматическом ретикулуме и связанный с двумя внемитохондриальными цепями переноса электронов, генерирующих восстановленные формы НАДФ и НАД. Источником НАДФ.Н 2 служит главным образом пентозофосфатный цикл, а НАД.Н 2 - гликолиз.

Общим самоокисляющимся (аутооксидабельным) звеном этих полифемерментных комплексов является цитохром Р-450. В состав этого комплекса входят также цитохром в 5 , НАДФ.Н-цитохром-Р-450-редуктаза (ФП 1) и НАД.Н-цитохром в 5 -редуктаза (ФП 2).

Цитохром Р 450 представляет собой гемсодержащий белок, широко распространенный в тканях животных и растений. Он локализован в глубоких слоях мембран эндоплазматической сети. При взаимодействии с СО восстановленный цитохром образует карбонильный комплекс, характеризующийся полосой поглощения при 450 нм, что и определило название фермента. Цитохрому Р 450 присуще многообразие изоформ и широта субстратной специфичности. Эту широту субстратной специфичности характеризуют как специфичность к гидрофобности веществ.

Цитохром Р 450 является важнейшим компонентом микросомальной монооксигеназной системы. Этот фермент отвечает за активацию молекулярного кислорода (путем переноса на него электронов) и за связывание субстрата. Цитохром Р450 использует активированный кислород для окисления субстрата и образования воды.

Другой компонент микросомальной монооксигеназной системы НАДФ*Н 2 цитохромР 450 редуктаза (ФП 1) служит переносчиком электронов с НАДФ*Н 2 на цитохром Р 450 . Этот фермент - флавопротеид, содержащий ФАД и ФМН, связан с фракцией поверхностных мембранных белков эндоплазматического ретикулума. Этот фермент способен передавать электроны не только на цитохром Р 450 , но и на другие акцепторы (на цитохром в 5 , цитохром с).

Цитохром в 5 представляет собой гемопротеид, который, в отличие от цитохрома Р 450 , локализирован в основном на поверхности мембран эндоплазматического ретикулума. Цитохром в 5 способен получать электроны не только от НАДФ*Н 2 , но и от НАД*Н 2 участвуя в функционировании НАД*Н 2 -зависимой цепи транспорта электронов.

В состав этой цепи также входит фермент НАД*Н 2 -цитохром-В 5 -редуктаза (ФП 2).

Этот фермент, так же как и цитохром В 5 , не фиксирован строго на определенных участках мембраны эндоплазматической сети, а способен менять свою локализацию, передавая электроны с НАД*Н 2 на цитохром В 5 .

В процессе метаболизма ксенобиотиков, где ведущую роль играют НАДФ*Н 2 -зависимые реакции, имеет место взаимодействие НАДФ*Н 2 и НФД*Н 2 -зависимых цепей. Установлена тесная функциональная связь цитохромов Р 450 и В 5 . Они могут образовывать сложные гемпротеидные комплексы, что обеспечивает высокую скорость катализируемых ими реакций превращения ксенобиотиков.

Среди схем биотрансформации ксенобиотиков под воздействием монооксигеназ наибольшее распространение получила схема Эстабрука, Гильденбрандта и Барона. Согласно этой схеме предполагается, что вещество –SH (в том числе – лекарство) на первой стадии взаимодействует с окисленной формой цитохрома Р 450 (Fe 3+) с образованием фермент-субстратного комплекса (SH-Fe 3+). На второй стадии фермент-субстратный комплекс восстанавливается электроном, поступающим от НАДФ*Н 2 посредством НАДФ*Н 2 -цитохромР 450 -редуктазы (ФП 1) при возможном участии цитохрома В 5 . Образуется восстановленный фермент-субстратный комплекс (SH-Fe 2+). Третья стадия характеризуется взаимодействием восстановленного фермент-субстратного комплекса с кислородом с образованием трехкомпонентного комплекса SH-Fe 2+ -О 2 . Присоединение кислорода осуществляется с большой скоростью. На четвертой стадии тройной фермент-субстрат-кислородный комплекс восстанавливается вторым электроном, который, по-видимому, поступает из НАД*Н 2 -специфической цепи переноса, включающей НАД*Н 2 -цитохром-В 5 -редуктазу (ФП 2) и, возможно, цитохром В 5 . Образуется восстановленный комплекс SH-Fe 2+ -О 2 1- .

Пятая стадия характеризуется внутримолекулярными превращениями восстановленного тройного фермент-субстрат-кислородного комплекса (SH-Fe 2+ -О 2 1- ↔ SH-Fe 3+ -О 2 2-) и его распадом с освобождением воды и гидроксилированного субстрата. При этом цитохром Р450 переходит в исходную окисленную форму.

При функционировании монооксигеназ генерируются активные радикалы, в первую очередь - супероксидный анион (О 2 -): тройной фермент-субстрат-кислородный комплекс до восстановления вторым электроном может вступать в обратимую реакцию превращения в окисленный фермент-субстратный комплекс и при этом генерируется супероксидный анион О 2 - .

Схему Эстабрука, Гильденбрандта и Барона можно представить следующим образом:

В отличие от митохондриальной дыхательной цепи, в которой молекулярный кислород, являющийся непосредственным акцептором электронов на последнем участке цепи, идет только на образование воды, в микросомальной монооксигеназной системе, наряду с образованием воды (на которое расходуется один атом кислорода), осуществляется при посредстве цитохрома Р 450 непосредственное присоединение кислорода (его второго атома) к окисляемому субстрату (лекарственному веществу) и происходит его гидроксилирование.

Кроме того, в отличие от митохондриальной цепи, где энергия, освобождающаяся в процессе переноса электронов, реализуется в виде АТФ на трех участках дыхательной цепи благодаря сопряжению окисления с фосфорилированием, в микросомальной цепи энергия окисления вообще не освобождается, а используется лишь редуцирующие эквиваленты НАДФ*Н 2 , необходимые для восстановления кислорода до воды. Поэтому окислительное гидроксилирование рассматривают, как свободное (т.е. не сопровождаемое образованием АТФ окисление).

Микросомальные монооксигеназные системы катализируют различные реакции окислительного превращения липотропных ксенобиотиков, в том числе лекарств. Наибольшее значение придается следующим окислительным реакциям превращения лекарственных веществ:

1) гидроксилированию ароматических соединений (например: салициловая кислота→ гентизиновая кислота → диокси- и триоксибензойная кислоты);

2) гидроксилированию алифатических соединений (например: мепробамат → кетомепробамат);

3) окислительному дезаминированию (например: фенамин → бензойная кислота);

4) S-дезалкилированию (например: 6-метилтиопурин → 6-тиопурин);

5) О-дезалкилированию (например: фенацетин → параацетамидофенол);

6) N-дезалкилированию (например: ипрониазид → изониазид);

7) сульфоокислению (например: тиобарбитал → барбитал);

8) N-окислению (например: диметиланилин → N-окись диметиланилина).

Помимо окислительных ферментных систем эндоплазматический ретикулюм печени содержит восстановительные ферменты. Эти ферменты катализируют восстановление ароматических нитро- и азосоединений в амиды. По химической природе восстановительные ферменты являются флавопротеидами, у которых простетической группой является ФАД. В качестве примера можно привести восстановление пронтозина в сульфаниламид.

Микросомальные ферменты печени (эстеразы) принимают участие также в реакциях гидролиза лекарственных веществ (сложных эфиров и амидов). Гидролиз – очень важный путь инактивации многих препаратов. В качестве примера может служить превращения ацетилсалициловой кислоты (сложный эфир) в салициловую кислоту и уксусную кислоту; ипрониазида (амид) в изоникотиновую кислоту и изопропилгидрозин, метаболизирующихся, в основном, путем гидролиза.

Фармакодинамика лекарственных средств. Основные принципы действия лекарственных веществ. Понятие о специфических рецепторах, агонистах и антагонистах. Фармакологические эффекты. Виды действия лекарственных средств.

Фармакодинамика

Фармакодинамика состоит из первичной и вторичной фармакологических реакций. Первичная фармакологическая реакция представляет собой взаимодействие биологически активных веществ, включая лекарственные вещества, с циторецепторами (или мы просто говорим с рецепторами). В результате такого взаимодействия развивается вторичная фармакологическая реакция в виде изменения метаболизма и функций органов и клеток. Нерецепторные механизмы действия лекарственных средств встречаются редко. Например, отсутствуют рецепторы для ингаляционных наркозных средств, плазмозаменителей, осмотических мочегонных средств.

Что же такое циторецепторы? Циторецепторы – это биомакромолекулы белковой природы созданы природой для эндогенных лигандов – гормонов, нейромедиаторов и так далее.

Лиганды – это вещества, способные связываться с циторецептором и вызывать специфический эффект. Они могут быть эндогенные, о чем говорилось выше (гормоны, нейромедиаторы), а также экзогенные, это ксенобиотики (например, лекарственные средства). Рецепторы имеют активные центры – это функциональные группы аминокислот, фосфатидов, сахаров и так далее. Лекарственные средства устанавливают с рецепторами физико-химические связи – вандерваальсовы, ионные, водородные – по принципу комплементарности, то есть активные группы лекарств взаимодействуют с соответствующими группами активного центра рецептора. Эти связи у большинства лекарств непрочные и обратимые. Но бывают прочные ковалентные связи лекарственного вещества и рецептора. Эта связь необратима. Например, тяжелые металлы, противоопухолевые средства. Такие лекарственные вещества высокотоксичны.

По отношению к рецепторам лекарственные вещества обладают: аффинитетом и внутренней активностью. Аффинитет (сродство) – это способность образовывать комплекс с рецептором. Внутренняя активность – это способность вызывать клеточный ответ.

В зависимости от выраженности аффинитета и наличия внутренней активности лекарственные вещества делят на 2 группы: агонисты и антагонисты. Агонисты (от греч. соперник) или миметики (от греч. подражать) – это вещества с умеренным аффинитетом и высокой внутренней активностью. Агонисты делятся на: полные агонисты, они вызывают максимальный ответ; частичные агонисты (парциальные). Они вызывают менее значительный ответ. Антагонисты или блокаторы – это вещества с высоким аффинитетом, но лишенные внутренней активности. Они препятствуют развитию клеточного ответа. Вещества, которые блокируют активные центры рецепторов, являются конкурентными антагонистами. Антагонисты, обладая высоким аффинитетом, более продолжительно связываются с циторецепторами. Некоторые вещества могут проявлять свойства агонистов-антагонистов, когда одни рецепторы возбуждаются, а другие – угнетаются.

Лекарственные средства могут присоединяться не к активному центру, а к аллостерическому центру рецептора. В этом случае они модифицируют структуру активного центра, и изменяет реакцию на лекарства или эндогенные лиганды. Например, аллостерическими рецепторами являются бензодиазепиновые рецепторы, когда лекарства бензодиазепинового ряда взаимодействуют с бензодиазепиновыми (аллостерическими) рецепторами, повышается аффинитет ГАМК-рецепторов к ГАМКислоте.

Циторецепторы классифицируют на 4 типа. 1 –рецепторы, непосредственно сопряженные с ферментами мембраны клеток. 2 – рецепторы ионных каналов мембраны клеток, они повышают проницаемость мембран для натрия, калия, кальция, хлора и обеспечивают мгновенный клеточный ответ. 3 – рецепторы, взаимодействующий с G-белками (мембранные белки). При возбуждении таких рецепторов образуются внутриклеточные биологически активные вещества – вторичные мессенджеры (от англ. «посредник», «вестник»), например цАМФ. 4 – рецепторы-регуляторы транскрипции. Эти рецепторы находятся внутри клетки (ядро, цитоплазма, то есть ядерные, цитозольные белки). Эти рецепторы взаимодействуют с гормонами (тиреоидные, стероидные), витамины А и Д. В результате такого взаимодействия изменяется синтез многих функционально активных белков.

Типовые механизмы действия лекарственных веществ. Их можно разделить на 2 группы: высокоизбирательные (рецепторные), неизбирательные (не связаны с рецептором). Различают 6 видов рецепторных механизмов действия лекарств.

1. Миметический эффект – это воспроизведение действия эндогенного (естественного) лиганда, то есть лекарственное вещество взаимодействует с рецептором и вызывает те же эффекты, что и эндогенный лиганд. Для проявления миметического действия надо, чтоб лекарственное вещество имело большое структурное сходство с лигандом (ключ-замок). Вещества, возбуждающие рецептор называются миметиками. Например, миметик карбахолин (лекарственный препарат) возбуждает рецептор – «холинорецептор». Эндогенный лиганд этого рецептора является ацетилхолин. Лекарственные средства, обладающими миметическим эффектом, называются «агонистами». Агонисты непосредственно возбуждают рецептор или повышают функцию рецептора:

2. Литический эффект или конкурентная блокада естественного лиганда. В этом случае лекарственное вещество лишь сходно с естественным лигандом. Этого достаточно, чтоб связаться с рецептором, но недостаточно, чтоб возбудить его. То, связавшись частично с рецептором, лекарственное вещество и сам не может возбудить рецептор и не дает возможности естественному лиганду соединиться с рецептором. Эффект лиганда отсутствует, наступает блокада рецептора. Лекарственные вещества, блокирующие рецепторы называются «блокаторами» или «литиками» (адренолитики, холинолитики).

рецептор лиганд блокатор

Если концентрация эндогенного лиганда повышается, то он может вытеснить (путем конкуренции) лекарственное вещество из связи с рецептором. Лекарственные средства, которые препятствуют действию «лиганд-агонистов» называются антагонистами. Они бывают конкурентными и неконкурентными.

3. Аллостерическое или неконкурентное взаимодействие. Кроме активного центра рецептор имеет еще аллостерический центр, который регулирует скорость ферментативных реакций. Лекарственное средство, связываясь с аллостерическим центром либо «открывает» активный центр, либо «закрывает» его. В первом случае рецептор «активируется», во втором – «блокируется.

4. Активация либо ингибирование ферментов (внутриклеточное или внеклеточное). В этих случаях рецептором для лекарственных веществ выступают ферменты. Например, лекарства: фенобарбитал, зиксорин – активируют микросомальные ферменты. Ниламид ингибирует фермент МАО.

5. Изменение функций транспортных систем и проницаемости мембран клеток и органелл. Например, верапамил, нифедипин блокируют медленные кальцевые каналы. Антиаритмические средства, местные анестетики изменяют проницаемость мембран для ионов.

6. Нарушение функциональной структуры макромолекулы. Например, противосудорожные, противоопухолевые средства.

К неизбирательным типовым механизмам действия лекарств относят. 1. Прямое физико-химическое взаимодействие лекарственных веществ. Например, натрия гидрокарбонат нейтрализует соляную кислоту желудка при повышенной кислотности, активированный уголь адсорбирует токсины. 2. Связь лекарственных средств с низкомолекулярными компонентами организма (ионы, микроэлементы). Например, трилон Б связывает ионы кальция в организме.

Виды действия лекарственных средств.

1. Резорбтивное действие (резорбция – всасывание) – это действие лекарственных средств, которое развивается после всасывания их в кровь. Это действие еще называют «общее действие». Например, нитроглицерин под язык. Инъекционные формы препаратов.

2. Местное действие – это действие лекарственных средств на месте его приложения (кожа, слизистые). Например, мази, пасты, присыпки, полоскания с использованием препаратов, оказывающих противовоспалительное, вяжущее, прижигающее действие.

Рефлекторное действие – это, когда лекарственный препарат действует на нервные окончания, что приводит к появлению ряда рефлексов со стороны органов и систем. Может одновременно развиваться и рефлекторное и местное и резорбтивное действия. Примеры рефлекторного действия. Валидол (под язык) рефлекторно расширяет сосуды сердца, в результате чего исчезают боли в сердце. Горчичники оказывают и местное (покраснение кожи) и рефлекторное действие. Действие горчичников на кожу сопровождается местным действием (покраснение кожи) и рефлекторным, связанным с раздражением чувствительных нервных окончаний горчичным эфирным маслом. При этом развивается 2 рефлекса.

Первый – аксон-рефлекс замыкается на уровне спинного мозга. При этом расширяются сосуды того органа, который топографически связан с рефлексогенными зонами Захарьина-Геда, на которые положили горчичник. Это расширение сосудов больного органа называется трофическим действием горчичников.

Второй рефлекс замыкается на уровне коры головного мозга. Больной чувствует боль жжение в месте нанесения горчичников, а ощущения формируются в коре головного мозга. Итак, в коре головного мозга возникают 2 очага возбуждения: один связан с горчичником, второй – связан с больным органом. Если доминирует очаг возбуждения с рецепторов кожи, то реализуется «отвлекающее» действие, то есть снимается боль с внутренних органов (стенокардия, кашель при бронхитах).

4. Центральное действие – это действие лекарственных средств на центральную нервную систему. Например, снотворные, успокаивающие, наркозные средства.

5. Избирательное действие – это преимущественное действие лекарственных средств на определенные органы и системы или на определенные рецепторы. Например, сердечные гликозиды.

6. Неизбирательное (протоплазматическое) действие лекарственных веществ, когда препарат действует однонапрвленно на большинство органов и тканей организма. Например, антисептическое действие солей тяжелых металлов обусловлено блокадой SH-групп тиоловых ферментов любых тканей организма. Этим объясняется и терапевтическое и токсическое действие лекарств. Хинин, например, оказывает мемраностабилизирующее действие в сердце, гладких мышцах, центральной нервной системе, периферической нервной системе. Поэтому хинин многообразен как лекарственный препарат и у него многообразны побочные эффекты.

7. Прямое действие – непосредственное действие лекарственного средства на определенный орган или процесс. Например, сердечные гликозиды прямо действуют на сердце (увеличивают силу сердечных сокращений).

8. Косвенное действие лекарственных средств. Под косвенным действием подразумевают вторичные изменения функций органа в результате прямого влияния препарата на другой орган или систему. Например, сердечные гликозиды за счет прямого действия на сердце увеличивает силу сердечных сокращений, что вызывает улучшение общей гемодинамики, в том числе и почек. В результате – косвенно увеличивается диурез. Таким образом, мочегонное действие сердечных гликозидов – это косвенное действие.

9. Главное действие препарата – это то действие, которое лежит в основе его лечебного или профилактического применения: дифенин – противосудорожное действие, новокаин – обезболивающее (местное действие), фуросемид – мочегонное.

10. Побочное действие – это способность лекарственного средства вызывать помимо главного действия, другие виды действия на органы и системы нежелательные и даже приносящие вред. Например, при спазме кишечника хорошо помогает атропин – он «снимает» спазм, но одновременно вызывает сухость во рту (это – побочный эффект).

Стоматологам! При длительном применении противосудорожного средства дифенина (при эпилепсии) может возникнуть гиперпластический гингивит (воспаление слизистой десны). Однако это побочное действие дифенина иногда используют стоматологи для ускорения регенерации слизистой оболочки полости рта.

11. Токсическое действие – это резкие сдвиги функций органов и систем, выходящие за пределы физиологических при назначении чрезмерно больших доз препаратов или в результате повышенной чувствительности больного к этому препарату. Токсическое действие препаратов может проявляться по-разному6 аллергической реакцией, угнетение сердечно-сосудистой деятельности, угнетение дыхания, угнетение кроветворения и так далее.

Можно выделить еще обратимое действие лекарственных веществ, необратимое действие лекарственных средств. Пример обратимого действия – это прозерин, который обратимо ингибирует холинэстеразу (связь с этим ферментом непрочная и недлительная). Пример необратимого действия – действие прижигающих средств (коагуляция белков)Реакции, обусловленные длительным приемом и отменой лекарственных средств: кумуляция, сенсибилизация, привыкание, тахифилаксия, синдром «отдачи», синдром «отмены», лекарственная зависимость.

1. Кумуляция – это накопление лекарственного вещества или его эффектов в организме. Кумуляция бывает двух видов. Во-первых – это материальная (физическая), когда в организме накапливается само лекарственное вещество. Причины: медленная инактивация препарата, стойкое связывание с белками крови, патология печени, почек, повторная реабсорбция и так далее. Для предотвращения материальной кумуляции надо: уменьшить дозу вещества, увеличить интервалы между приемами! Во-вторых – это функциональная кумуляция , когда накапливается эффект лекарственного средства. Такую кумуляцию можно наблюдать при приеме алкоголя. Сам этиловый спирт быстро окисляется в организме и не накапливается. Но при частом применении его эффект усиливается (накапливается) и проявляется в виде психоза («белая горячка»).

2. Сенсибилизация – это усиление действия лекарственных веществ при их повторном введении даже в малых дозах. Это реакция иммунной природы и она может возникнуть к любым лекарственным средствам (анафилактический шок).

3. Привыкание (толерантность) – это снижение эффекта при повторном введении лекарственного средства в той же дозе. Например, при постоянном приеме снотворных средств или капель от насморка они перестают действовать, то есть наступает привыкание. При постоянном приеме морфина также наступает привыкание, что вынуждает «морфинистов» увеличивать дозу морфина до 10 – 14 грамм в сутки.

Причины привыкания. Снижение чувствительности рецепторов к некоторым препаратам. Например, снижается чувствительность к некоторым противоопухолевым средствам, что вынуждает менять препарат. Снижение возбудимости чувствительных нервных окончаний (слабительные). Ускоренная инактивация препарата в силу индукции микросомальных ферментов печени (фенобарбитал). Включение механизмов компенсации, которые снижают вызванный препаратом сдвиг. Например, даем препарат, снижающий артериальное давление, в организме наступает задержка жидкости и компенсаторно повышается артериальное давление. Аутоингибирование, то есть за счет избытка лекарственного вещества происходит связывание с рецептором нескольких молекул лекарственного вещества. Наступает «перегрузка» рецептора. В результате, эффект препарата снижается.

Эффект «привыкания» можно устранить: если делать перерывы в лечении, чередовать препараты, комбинировать с другими лекарственными средствами.

4. Тахифилаксия – это острая форма привыкания, которая развивается после повторного введения препарата в пределах от нескольких минут до одних суток. Например, вводим эфедрин и наблюдаем значительное повышение артериального давления, а при повторном введении через несколько минут эффект слабый, а еще через несколько минут эффект еще слабее. Тахифилаксия наступает к эфедрину, адреналину, норадреналину. Тахифилаксия объясняется тем, что при повторном введении препарат не может полностью связаться с рецептором, так как он еще занят первой порцией препарата.

5. Синдром (феномен) отдачи наступает после внезапного прекращения введения препарата. При этом наступает суперкомпенсация процесса с резким обострением болезни по сравнению с долечебным периодом. Растормаживание регуляторных процессов. Например, после внезапной отмены клофелина у больного с гипертонической болезнью, может наступить гипертонический криз (резкий подъем артериального давления). Наступил взрыв регуляторных реакций. Чтобы избежать феномена «отдачи» надо постепенно уменьшать дозу препарата (не отменять внезапно).

6. Синдром (феномен) «отмены» наступает после внезапного прекращения введения препарата. В отличие от синдрома «отдачи», в данном случае наступает подавление физиологической функции. Например, при назначении больному гормональных препаратов глюкокортикоидов подавляется выработка собственных гормонов (по принципу обратной связи). Надпочечники как бы атрофируются. И резкая отмена препарата сопровождается острой гормональной недостаточностью.

7. Лекарственная «зависимость» развивается при повторном приеме психотропных лекарственных средств. Лекарственная зависимость бывает психическая и физическая. По определению экспертов ВОЗ психическая зависимость – это состояние, при котором лекарственное средство вызывает чувство удовлетворения и психического подъема. Это состояние требует периодического и постоянного введения лекарственного средства, чтобы испытать удовольствие и избежать дискомфорта. Другими словами, психическая зависимость – это «пристрастие» или болезненное влечение. Психическая зависимость обусловлена способностью наркотиков повышать освобождение дофамина в полосатом теле, гипоталамусе, лимбической системе, коре больших полушарий. по мере развития пристрастия лекарство изменяет обмен веществ в клетках мозга и становится необходимым регулятором функции многих нейронов. Внезапное лишение тонизирующего средства вызывает синдром «абстиненции» (синдром 2отнятия», «лишения»). Этот синдром проявляется рядом физических расстройств и наступает «физическая зависимость». Физические расстройства могут быть очень серьезными: нарушение сердечно-сосудистой системы, возбуждение, бессонница, судороги или угнетение, депрессия, попытки к самоубийству. Чтобы прервать синдром абстиненции человек должен ввести наркотик и готов идти на «все», чтобы его достать. Вещества, вызывающие лекарственную зависимость: алкоголь и подобные вещества, барбитураты, препараты опия, кокаин, фенамин, вещества типа каннабиса (гашиш, марихуана), галлюциногены (ZSD, мескалин), эфирные растворители (толуол, ацетон,CCL 4).

Факторы, влияющие на фармакокинетику и фармакодинамику лекарственных веществ. Химическая структура и физико-химические свойства лекарственных веществ. Значение стереоизомерии, липофильности, полярности, степени диссоциации.

Предложено лекарственное средство, повышающее активность микросомальных оксидаз печени человека, Оно может быть использовано при лечении и профилактике различных интоксикаций веществами, биотрансформация которых зависит от активности ферментов системы окисления. В качестве такого средства предложен ксимедон (N- -оксиэтил)-4,6-диметил-1,2-дигидро-2-оксопиримидин), ранее известный как препарат с широким спектром биологического действия и низкой токсичностью. Ксимедон увеличивает активность микросомальных оксидаз печени человека, причем его индуцирующий эффект сопоставим с индукцией фенобарбиталом. 2 табл.

Изобретение относится к медицине, в частности к лекарственным средствам, повышающим активность микросомальных оксидаз печени человека, и может быть использовано при лечении и профилактике различных заболеваний и интоксикаций веществами, биотрансформация которых зависит от активности ферментов системы окисления.

Как известно, скорость элиминации из организма лекарственных веществ, подвергающихся биотрансформации, зависит от активности ферментных систем, отвечающих за данный вид метаболизма. Одной из основных ферментных систем, локализованных в печени, является система микросомальных оксидаз. В качестве тест-препарата для определения скорости окисления часто используют антипирин.

В настоящее время известно большое число индукторов процесса окисления [Халилов Э.М. Современные представления о метаболизме лекарственных веществ в организме, Краткий курс молекулярной фармакологии под ред. Сергеева П.В., Московский медицинский институт им. Н.И.Пирогова, Москва, 1975, 340 с.; Большев В.Н., Индукторы и ингибиторы ферментов метаболизма лекарств, Фармакология и токсикология, 1980, № 3], повышающих активность биотрансформации лекарств путем индукции синтеза микросомальных оксидаз.

Среди них вещества, которые повышают активность биотрансформации лекарств путем индукции синтеза микросомальных оксидаз:

а) группа фенобарбитала, рифампицин, димедрол, диазепам, дифенин, нитроглицерин (аутоиндуктор);

б) полициклические (канцерогенные) углеводороды;

в) стероидные гормоны;

и вещества, которые снижают активность биотрансформации лекарств в эндоплазматическом ретикулуме печени:

а) ингибиторы моноаминооксидазы;

б) этазол, кобальта хлорид, Н2 гистаминовые блокаторы, хлорамфеникол, -адреноблокаторы, эритромицин, амидарон, лидокаин.

Известно, что используемые индукторы (например, фенобарбитал) могут оказывать негативное влияние на организм человека, вызывая сонливость, привыкание и т.д. [Машковский М.Д. Лекарственные средства. Т.2. - М.: Новая Волна, 2000. - 648 с]

Задачей заявляемого изобретения является новое лекарственное средство для увеличения активности микросомальных оксидаз печени человека, расширяющее арсенал известных препаратов-индукторов.

Технический результат заключается в повышении активности микросомальных оксидаз печени человека при приеме препарата ксимедон.

Ксимедон представляет собой N-( -оксиэтил)-4,6-диметил-1,2-дигидро-2-оксопиримидин формулы:

и является одним из наиболее простых негликозидных аналогов пиримидиннуклеозидов. Препарат обладает широким спектром биологического действия, токсичность ксимедона чрезвычайно низка LD 50 - от 6500 до 20000 мг/кг для различных животных при разных способах введения [Измайлов С.Г. и др. Ксимедон в клинической практике. Нижний Новгород: Изд-во НГМА 2001]. Приказом Минздрава №287 от 07.12.93 г. ксимедон разрешен к применению в медицине и внесен в реестр лекарственных средств.

Технический результат предлагаемого решения достигается применением препарата ксимедон в суточной дозе 1,5 грамм 7-дневным курсом для индупирования процессов окисления, что делает его перспективным в качестве лекарственного средства, способного повышать активность микросомальных оксидаз печени человека. Побочных эффектов при применении ксимедона не выявлено.

Скорость окисления оценивали разработанным ранее авторами методом - при помощи модифицированного антипиринового теста, при проведении которого определяли концентрацию антипирина в слюне. Тест-препарат окисления - антипирин - назначали пациентам однократно перорально в дозе 0,6 г. [Евгеньев М.И., Гармонов С.Ю., Шитова Н.С., Погорельцев В.И. Биофармацевтический анализ ферментативной активности метаболических систем организма // Вестник Казанского государственного технологического университета. - 2004. - № 1-2. - С.74-81; Гармонов С.Ю., Киселева Т.А., Салихов И.Г., Евгеньев М.И., Шитова Н.С., Полехина В.И., Погорельцев В.И. Оценка фенотипов ацетилирования и окисления у больных сахарным диабетом 2 типа // Нижегородский медицинский журнал. - 2005. - № 3. - С.29-35.]

Индукцию микросомальных оксидаз печени человека ксимедоном выражали в процентах по отношению кумулятивного количества антипирина, выведенного со слюной в течение 12 часов после введения тест-препарата до и после курсового приема индуктора ксимедона в суточной дозе 1,5 г в течение 7 дней.

Исследования проводились в группе 8 здоровых добровольцев.

Методика определения активности микросомальных оксидаз печени человека.

Антипирин вводят добровольцу однократно перорально в дозе 0,6 г утром натощак. Слюну собирают через каждые 3 часа в течение 12 часов после приема тест-препарата. В почасовых пробах слюны определяют содержание антипирина спектрофотометрическим методом. По полученным данным строят кинетические кривые, рассчитывают кумулятивное количество антипирина, выведенного со слюной за 12 часов, количество содержащегося в слюне антипирина определяют по градуировочному графику.

Ксимедон принимают в суточной дозе 1,5 г (3 раза в сутки по 0,5 г) в течение 7 дней перед повторным определением количества антипирина в слюне. Через 7 дней снова проводят определение выведенного количества антипирина описанным выше способом (антипириновым тестом).

С общ.1 - кумулятивное количество антипирина (мкг), выведенного со слюной в течение 12 часов до приема индуктора;

С общ.2 - кумулятивное количество антипирина (мкг), выведенного со слюной в течение 12 часов после приема индуктора.

Действие способа иллюстрируется следующими примерами конкретного выполнения.

Пациент Каюмова - здоровый доброволец.

Антипирин однократно перорально вводят пациенту в дозе 0,6 г. Слюну собирают каждые три часа в течение 12 часов после приема тест-препарата. Для осаждения твердых частиц слюну центрифугируют в течение 10 минут. В пробирки вносят по 2 мл надосадочной жидкости, 2 мл дистиллированной воды, 2 мл цинкового реактива, 2 мл 0,75 н гидроксида калия (по каплям). Встряхивают раствор в течение 30 секунд. Далее проводят центрифугирование в течение 15 минут. По 3 мл чистого супернатанта каждого образца переносят в пробирки и помещают в термостат на 5 минут при температуре 25°С. Затем, не извлекая пробы из термостата, добавляют 0,05 мл 4 н серной кислоты и 0,1 мл 0,2% раствора нитрита натрия. Инкубацию продолжают в течение 20 минут. Далее оптическую плотность измеряют на спектрофотометре при длине волны 350 нм. Количество выведенного антипирина определяют по градуировочному графику. Раствором сравнения служит раствор, приготовленный со слюной, взятой у пациента до приема тест-препарата, по описанному выше образцу.

На следующий день пациенту назначают препарат ксимедон в дозе 0,5 г 3 раза в день. Курс составляет 7 дней. Через 7 дней снова проводят определение выведенного количества антипирина описанным выше способом.

Расчет индукции (%) производят по формуле 1:

С общ.1 - кумулятивное количество антипирина (мкг), выведенного со слюной в течение 12 часов до приема ксимедона;

С общ.2 - кумулятивное количество антипирина (мкг), выведенного со слюной в течение 12 часов после приема ксимедона.

Результаты приведены в таблице 1.

Определения активности микросомальных оксидаз печени пациентов 2-8 проводили аналогично примеру 1. Результаты приведены в таблице 1.

Пациент Ибрагимов - здоровый доброволец.

Пациент Смердова - здоровый доброволец.

Пациент Мотыгуллина - здоровый доброволец.

Пациент Яруллина - здоровый доброволец.

Пациент Яковлева - здоровый доброволец

Пациент Султанбеков - здоровый доброволец.

Пациент Калайбашева - здоровый доброволец.

Для сопоставления увеличения активности окислительных ферментов при приеме ксимедона проверялось влияние на фармакокинетику антипирина известного индуктора процесса окисления фенобарбитала. Фенобарбитал вводился перорально в дозе 0,03 г 3 раза в день в течение трех дней, что соответствует стандартной фармакологической дозе, применяемой в медицине для спазмолитического и успокающего эффекта [Машковский М.Д. Лекарственные средства. Т.2. - М.: Новая Волна, 2000. - 648 с.]. Индукция фенобарбитала определялась по отношению кумулятивного количества антипирина, содержащегося в слюне до и после приема фенобарбитала в суточной дозе 0,09 г.Исследования проводились в группе 5 здоровых добровольцев (Закирова, Валитова, Шитова, Ермолаева, Галиутдинов - примеры 9-13). Расчет индукции (%) производят по формуле 1:

С общ.1 - кумулятивное количество антипирина (мкг), выведенного со слюной в течение 12 часов до приема фенобарбитала;

С общ.2 - кумулятивное количество антипирина (мкг), выведенного со слюной в течение 12 часов после приема фенобарбитала.

Результаты приведены в таблице 2.

Пациент Закирова - здоровый доброволец.

Пример 10.

Пациент Валитова - здоровый доброволец.

Пример 11.

Пациент Шитова - здоровый доброволец.

Пример 12.

Пациент Ермолаева - здоровый доброволец.

Пример 13.

Пациент Галиутдинов - здоровый доброволец.

Полученные результаты показывают, что применение ксимедона позволяет увеличивать активность микросомальных оксидаз печени человека, причем индуцирующий эффект, вызываемый ксимедоном, сопоставим с индукцией фенобарбиталом.

Применение ксимедона как индуктора микросомальных оксидаз печени эффективно при профилактике и лечении острых и хронических интоксикаций лекарственными средствами, биотрансформация которых зависит от активности ферментов системы окисления.

Регуляция активности окислительных ферментов с помощью индуктора ксимедона является безопасной с точки зрения передозировки самого индуктора вследствие его низкой токсичности.

Таблица 1
Индукция микросомальных оксидаз печени человека под действием ксимедона
№ примера № пробы А (оптическая плотность) С общ.1 (кумулятивное количество экскретируемого антипирина общее), мкг А (оптическая плотность) С (количество экскретируемого антипирина), мкг С общ.2 (кумулятивное количество экскретируемого антипирина общее), мкг Индукция, %
1 1 0,185 9,893 29,678 0,100 5,347 16,842 43,25
2 0,190 10,160 0,060 3,208
3 0,120 6,417 0,105 5,614
4 0,060 3,208 0,050 2,673
2 1 0,015 0,802 7,486 0,040 2,139 6,401 14,49
2 0,045 2,406 0,060 3,208
3 0,040 2,139 0,010 0,534
4 0,040 2,139 0,010 0,534
3 1 0,140 7,486 21,121 0,035 1,871 9,356 55,70
2 0,070 3,743 0,075 4,010
3 0,105 5,614 0,025 1,336
4 0,080 4,278 0,040 2,139
4 1 0,250 13,360 35,273 0,145 7,754 31,817 9,79
2 0,210 11,220 0,130 6,951
3 0,130 6,950 0,160 8,556
4 0,070 3,743 0,160 8,556
5 1 0,025 1,336 12,565 0,030 1,604 8,554 68,07
2 0,100 5,347 0,035 1,871
3 0,080 4,278 0,075 4,010
4 0,030 1,604 0,020 1,069
6 1 0,075 4,010 12,298 0,040 2,139 4,544 63,05
2 0,12 6,417 0,010 0,534
3 0,020 1,069 0,030 1,604
4 0,015 0,802 0,005 0,267
7 1 0,080 4,278 15,240 0,060 3,208 10,158 33,19
2 0,120 6,417 0,025 1,336
3 0,040 2,139 0,060 3,208
4 0,045 2,406 0,045 2,406
8 1 0,045 2,406 11,495 0,015 0,802 2,405 79,07
2 0,045 2,406 0,02 1,069
3 0,100 5,347 0,005 0,267
4 0,025 1,336 0,005 0,267
Таблица 2

Индукция микросомальных оксидаз печени человека под действием фенобарбитала

Примеры С общ1 (кумулятивное количество экскретируемого антипирина до приема индуктора), мкг С общ2 (кумулятивное количество экскретируемого антипирина после приема индуктора), мкг Индукция, %
9 13,635 3,474 74,52
10 10,159 7,217 28,95
11 13,635 4,544 66,67
12 17,646 7,217 59,10
13 20,854 13,635 34,62

ФОРМУЛА ИЗОБРЕТЕНИЯ

Применение ксимедона для увеличения активности микросомальных оксидаз печени человека.