» »

Превращение чужеродных веществ. Защитные силы организма человека

02.07.2020

Многогранность воздействия пищи на организм человека обусловлена не только наличием энергетических и пластических материалов, но и огромного количества пищевых, в том числе минорных компонентов, а также соединений неалиментарного характера. Последние могут обладать фармакологической активностью или оказывать неблагоприятное действие.

Понятие биотрансформации чужеродных веществ включает с одной стороны процессы их транспорта, метаболизма и реализации токсичности, с другой - возможность влияния отдельных нутриентов и их комплексов на эти системы, что в конечном счете обеспечивает обезвреживание и элиминацию ксенобиотиков. Вместе с тем некоторые из них обладают высокой стойкостью к биотрансформации и наносят ущерб здоровью. В этом аспекте следует также отметить термин детоксикация - процесс обезвреживания внутри биологической системы попавших в нее вредных веществ. В настоящее время накоплен достаточно большой научный материал о существовании общих механизмов токсичности и биотрансформации чужеродных веществ с учетом их химической природы и состояния организма. Наиболее изучен механизм двухфазной детоксикации ксенобиотиков.

На первом этапе, в качестве ответной реакции организма, происходят их метаболические превращения в различные промежуточные соединения. Этот этап связан с реализацией ферментативных реакций окисления, восстановления и гидролиза, протекающих, как правило, в жизненноважных органах и тканях: печени, почках, легких, крови и др.

Окисление ксенобиотиков катализируют микросомальные ферменты печени при участии цитохрома Р-450. Фермент имеет большое количество специфичных изоформ, что объясняет многообразие токсикантов, подвергающихся окислению.

Восстановление осуществляется с участием НАДОН-зависимого флавопротеида и цитохрома Р-450. В качестве примера можно привести реакции восстановления нитро- и азосоединений в амины, кетонов - во вторичные спирты.

Гидролитическому распаду подвергаются, как правило, сложные эфиры и амиды с последующей деэтерификацией и дезаминированием.

Вышеуказанные пути биотрансформации приводят к изменениям в молекуле ксенобиотика - увеличиваются полярность, растворимость и др. Это способствует их выведению из организма, уменьшению или исчезновению токсического эффекта.

Однако первичные метаболиты могут обладать высокой реакционной способностью и большей токсичностью по сравнению с исходными токсическими веществами. Такой феномен получил название метаболической активации. Реакционноспособные метаболиты достигают клеток-мишеней, запускают цепь вторичных катобиохимических процессов, лежащих в основе механизма гепатотоксического, нефротоксического, канцерогенного, мутагенного, иммуногенного действий и соответствующих заболеваний.

Особое значение при рассмотрении токсичности ксенобиотиков имеет образование свободнорадикальных промежуточных продуктов окисления, что наряду с продукцией реакционноспособных метаболитов кислорода приводит к индукции перекисного окисления липидов (ПОЛ) биологических мембран и поражению живой клетки. В этом случае немаловажная роль отводится состоянию антиоксидантной системы организма.

Вторая фаза детоксикации связана с так называемыми реакциями конъюгации. Примером могут служить реакции связывания активных -ОН; -NH 2 ; -СООН; SH-групп метаболитов ксенобиотика. Наиболее активное участие в реакциях обезвреживания принимают ферменты семейства глутатионтрансфераз, глюкоронилтрансфераз, сульфотрансфераз, ацилтрансфераз и др.

На рис. 6 представлена общая схема метаболизма и механизма токсичности чужеродных веществ.

Рис. 6.

На метаболизм ксенобиотиков могут оказывать влияние многие факторы: генетические, физиологические, факторы окружающей среды и т.д.

Представляет теоретический и практический интерес остановиться на роли отдельных компонентов пищи в регуляции процессов метаболизма и реализации токсичности чужеродных веществ. Такое участие может осуществляться на этапах всасывания в желудочно- кишечном тракте, печеночно-кишечной циркуляции, транспорта кровью, локализации в тканях и клетках.

Среди основных механизмов биотрансформации ксенобиотиков важное значение имеют процессы конъюгации с восстановленным глютатионом - Т-у-глутамил-Б-цистеинил глицин (TSH) - основным тиоловым компонентом большинства живых клеток. TSH обладает способностью восстанавливать гидроперекиси в глутатионперокси- дазной реакции, является кофактором в составе формальдегидде- гидрогеназы и глиоксилазы. Его концентрация в клетке (клеточный пул) в существенной степени зависит от содержания в рационе белка и серосодержащих аминокислот (цистеина и метионина), поэтому дефицит указанных нутриентов повышает токсичность широкого круга опасных химических веществ.

Как было отмечено выше немаловажная роль в сохранении структуры и функций живой клетки при воздействии активных метаболитов кислорода и свободнорадикальных продуктов окисления чужеродных веществ отводится антиоксидантной системе организма. Она состоит из следующих основных компонентов: супероксидисмутазы (СОД), восстановленного глутатиона, некоторых форм глутатион-Б-трансферазы, витаминов Е, С, р-каротина, микроэлемента селена - как кофактора глутатионпероксидазы, а также неалиментарных компонентов пищи - широкого круга фитосоединений (биофлавоноидов).

Каждое из этих соединений обладает специфичностью действия в общем метаболическом конвейере, формирующем антиоксидантную систему защиты организма:

  • СОД, в двух своих формах - цитоплазматической Cu-Zn-СОД и митохондриально-Мп-зависимой, катализирует реакцию дисмутации 0 2 _ в перекись водорода и кослород;
  • ESH (с учетом его вышеизложенных функций) реализует свое действие по нескольким направлениям: поддерживает сульфгидрильные группы белков в восстановленном состоянии, служит донором протонов для глутатионпероксидазы и глутатион-Б-трансферазы, действует в качестве неспецифического неферментативного гасителя свободных радикалов кислорода, превращаясь, в конечном счете, в окислительный глутатион (TSSr). Его восстановление катализируется растворимой НАДФН-зависимой глутатионредуктазой, коферментом которой является витамин В 2 , что определяет роль последнего в одном из путей биотрансформации ксенобиотиков.

Витамин Е (ос-токоферол). Наиболее значимая роль в системе регуляции ПОЛ принадлежит витамину Е, который нейтрализует свободные радикалы жирных кислот и восстановленных метаболитов кислорода. Протекторная роль токоферола показана при воздействии целого ряда загрязнителей окружающей среды, индуцирующих ПОЛ: озона, N0 2 , СС1 4 , Cd, Pb и др.

Наряду с антиоксидантной активностью витамин Е обладает антиканцерогенными свойствами - ингибирует в желудочно-кишечном тракте N-нитрозирование вторичных и третичных аминов с образование канцерогенных N-нитрозаминов, обладает способностью блокировать мутагенность ксенобиотиков, оказывает влияние на активность монооксигеназной системы.

Витамин С. Антиоксидантное действие аскорбиновой кислоты в условиях воздействия токсичных веществ, индуцирующих ПОЛ, проявляет в повышении уровня цитохрома Р-450, активности ее редуктазы и скорости гидроксилирования субстратов в микросомах печени.

Важнейшими свойствами витамина С, связанными с метаболизмом чужеродных соединений, являются также:

  • способность ингибировать ковалентное связывание с макромолекулами активных промежуточных соединений различных ксенобиотиков - ацетомиоонофена, бензола, фенола и др.;
  • блокировать (аналогично витамину Е) нитрозирование аминов и образование канцерогенных соединений в условиях воздействия нитрита.

Многие чужеродные вещества, например компоненты табачного дыма, окисляют аскорбиновую кислоту до дегидроаскорбата, снижая тем самым ее содержание в организме. Этот механизм положен в основу определения обеспеченности витамином С курильщиков, организованных коллективов, в том числе рабочих промышленных предприятий, контактирующих с вредными чужеродными веществами.

Для профилактики химического канцерогенеза лауреат Нобелевской премии Л. Полинг рекомендовал использование мегадоз, превышающих суточную потребность в 10 и более раз. Целесообразность и эффективность таких количеств остается спорным, поскольку насыщение тканей человеческого организма в этих условиях обеспечивается ежедневным потреблением 200 мг аскорбиновой кислоты .

Неалиментарные компоненты пищи, формирующие антиоксидантную систему организма включают пищевые волокна и биологически активные фитосоединения.

Пищевые волокна. К ним относят целлюлозу, гемицеллюлозу, пектины и лигнин, которые имеют растительное происхождение и не подвергаются воздействию пищеварительных ферментов.

Пищевые волокна могут оказывать влияние на биотрансформацию чужеродных веществ по следующим направлениям:

  • влияя на перестальтику кишечника, ускоряют прохождение содержимого и уменьшают тем самым время контакта токсических веществ со слизистой оболочкой;
  • изменяют состав микрофлоры и активность микробных ферментов, участвующих в метаболизме ксенобиотиков или их конъюгатов;
  • обладают адсорбционными и катионообменными свойствами, что дает возможность связывать химические агенты, задерживать их всасывание и ускорять выведение из организма. Эти свойства оказывают также влияние на печеночно-кишечную циркуляцию и обеспечивают метаболизм ксенобиотиков, поступающих в организм различными путями.

Экспериментальными и клиническими исследованиями установлено, что включение в рацион целлюлозы, каррагинина, смолы гуара, пектина, пшеничных отрубей приводит к ингибированию (3-глюкоронидазы и муциназы микроорганизмов кишечника. Такой эффект следует рассматривать как еще одну способность пищевых волокон трансформировать чужеродные вещества путем препятствия гидролизу конъюгатов этих веществ, удаления их из печеночно-кишечной циркуляции и усиления экскреции из организма с продуктами обмена.

Имеются данные о способности низкометоксилированного пектина связывать ртуть, кобальт, свинец, никель, кадмий, марганец и стронций. Однако такая способность отдельных пектинов зависит от их происхождения, требует изучения и избирательного применения. Так, например, пектин цитрусовых не проявляет видимого адсорбционного эффекта, слабо активирует (3-глюкоронидазу микрофлоры кишечника, характеризуется отсутствием профилактических свойств при индуцированном химическом канцерогенезе.

Биологически активные фитосоединения. Обезвреживание токсических веществ с участием фитосоединений связано с их основными свойствами:

  • влияют на процессы метаболизма и обезвреживают чужеродные вещества;
  • обладают способностью связывать свободные радикалы и реакционно-способные метаболиты ксенобиотиков;
  • ингибируют ферменты, активирующие чужеродные вещества и активируют ферменты детоксикации.

Многие из природных фитосоединений обладают конкретными свойствами индукторов или ингибиторов токсических агентов. Органические соединения, содержащиеся в кабачках, цветной и брюссельской капусте, броколли, способны индуцировать метаболизм чужеродных веществ, что подтверждается ускорением обмена фенацетина, ускорением периода полужизни антипирина в плазме крови испытуемых, получавших с рационом овощи семейства крестоцветных.

Особое внимание обращают на себя свойства этих соединений, а также фитосоединений чая и кофе - катехинов и дитерпенов (ка- феола и кафестола) стимулировать активность монооксигеназной системы и глутатион-S-трансферазы печени и слизистой оболочки кишечника. Последнее лежит в основе их антиоксидантного эффекта при воздействии канцерогенов и противораковой активности.

Представляет целесообразным остановиться на биологической роли других витаминов в процессах биотрансформации чужеродных веществ, не связанных с антиоксидантной системой.

Многие витамины выполняют функции коферментов непосредственно в ферментных системах, связанных с обменом ксенобиотиков, а также в ферментах биосинтеза компонентов систем биотрансформации.

Тиамин (витамин B t). Известно, что недостаточность тиамина является причиной повышения активности и содержания компонентов монооксигеназной системы, что рассматривается как неблагоприятный фактор, способствующий метаболической активации чужеродных веществ. Поэтому обеспеченность рациона витаминами может играть определенную роль в механизме детоксикации ксенобиотиков, в том числе промышленных ядов.

Рибофлавин (витамин В 2). Функции рибофлавина в процессах биотрансформации чужеродных веществ реализуются главным образом через следующие обменные процессы:

  • участие в метаболизме микросомальных флавопротеидов НАДФН-цитохром Р-450 редуктазы, НАДФН-цитохром-Ь 5 - редуктазы;
  • обеспечение работы альдегидоксидаз, а также глютатионре- дуктазы через коферментную роль ФАД с осуществлением генерации TSH из окисленного глутатиона.

В эксперименте над животными показано, что дефицит витамина приводит к снижению активности УДФ-глюкоронилтрансферазы в микросомах печени на основании показателя снижения скорости глюкуронидной конъюгации /7-нитрофенола и о-аминофенола. Имеются данные о повышении содержания цитохрома Р-450 и скорости гидроксилирования аминопирина и анилина в микросомах при алиментарной недостаточности рибофлавна у мышей .

Кобаламины (витамин В 12) и фолиевая кислота. Синергическое действие рассматриваемых витаминов на процессы биотрансформации ксенобиотиков объясняется липотропным действием комплекса этих нутриентов, важнейшим элементом которого является активация глутатион-Б-трансферазы и органические индукции моноксигена- зной системы.

При проведении клинических испытаний показано развитие дефицита витамина В 12 при воздействии на организм закиси азота, что объясняется окислением С0 2+ в СО э+ корриновом кольце коба- ламина и его инактивацией. Последнее вызывает недостаточность фолиевой кислоты, в основе которой лежит отсутствие регенерации ее метаболически активных форм в данных условиях.

Коферментные формы тетрагидрофолиевой кислоты наряду с витамином В 12 и Z-метионином участвуют в окислении формальдегида, поэтому дефицит этих витаминов может привести к усилению токсичности формальдегида, других одноуглеродных соединений, в том числе метанола.

В целом можно заключить, что пищевой фактор может играть важную роль в процессах биотрансформации чужеродных веществ и профилактике их неблагоприятного воздействия на организм. В этом направлении накоплены большой теоретический материал и фактические данные, однако многие вопросы остаются открытыми, требуют дальнейших экспериментальных исследований и клинических подтверждений.

Необходимо подчеркнуть необходимость практических путей реализации профилактической роли фактора питания в процессах метаболизма чужеродных веществ. Это включает разработку научнообоснованных рационов для отдельных групп населения, где присутствует риск воздействия на организм различных ксенобиотиков пищи и их комплексов в форме биологически активных добавок, специализированных продуктов питания и рационов.

Иммунитет: что он такое.

Конечной целью иммунной системы является уничтожение чужеродного агента, которым может оказаться болезнетворный микроорганизм, инородное тело, ядовитое вещество или переродившаяся клетка самого организма. В иммунной системе развитых организмов существует множество способов обнаружения и удаления чужеродных агентов, их совокупность называется иммунным ответом.

Все формы иммунного ответа можно разделить на приобретённые и врождённые реакции.

Приобретенный иммунитет формируется после "первой встречи" с конкретным антигеном - за хранение информации об этой "встрече" отвечают клетки памяти (Т-лимфоциты). Приобретённый иммунитет высокоспецифичен по отношению к конкретному типу антигенов и позволяет быстрее и эффективнее уничтожать их при повторном столкновении.

Антигенами называют вызывающие специфические реакции организма молекулы, воспринимаемые, как чужеродные агенты. Например, у перенёсших ветрянку (корь, дифтерию) людей часто возникает пожизненный иммунитет к этим заболеваниям.

Врожденный иммунитет характеризуется способностью организма обезвреживать чужеродный и потенциально опасный биоматериал (микроорганизмы, трансплантат, токсины, опухолевые клетки, клетки, инфицированные вирусом), существующая изначально, до первого попадания этого биоматериала в организм.

Морфология иммунной системы

Иммунная система человека и других позвоночных представляет из себя комплекс органов и клеток, способных выполнять иммунологические функции. Прежде всего иммунный ответ осуществляют лейкоциты. Большая часть клеток иммунной системы происходит из кроветворных тканей. У взрослых людей развитие этих клеток начинается в костном мозге. Лишь T-лимфоциты дифференцируются внутри тимуса (вилочковой железы). Зрелые клетки расселяются в лимфоидных органах и на границах с окружающей средой, около кожи или на слизистых оболочках.

Организм обладающих механизмами приобретённого иммунитета животных производит множество разновидностей специфических иммунных клеток, каждая из которых отвечает за какой-то определённый антиген. Наличие большого количества разновидностей иммунных клеток необходимо для того, чтобы отражать атаки микроорганизмов, способных мутировать и изменять свой антигенный состав. Значительная часть этих клеток завершает свой жизненный цикл, так и не приняв участие в защите организма, например, не встретив подходящих антигенов.

Иммунная система защищает организм от инфекции в несколько этапов, при этом с каждым этапом повышается специфичность защиты. Самая простая линия защиты представляет собой физические барьеры (кожа, слизистые оболочки), которые предотвращают попадание инфекции - бактерий и вирусов - в организм. Если возбудитель проникает через эти барьеры, промежуточную неспецифическую реакцию на него осуществляет врождённая иммунная система. Врождённая иммунная система обнаруживается у всех растений и животных. На случай, когда возбудители успешно преодолевают воздействие врожденных иммунных механизмов, у позвоночных существует третий уровень защиты - приобретённая иммунная защита. Эта часть иммунной системы адаптирует свою реакцию во время инфекционного процесса, чтобы улучшить распознавание чужеродного биологического материала. Такой улучшенный ответ сохраняется после уничтожения возбудителя в виде иммунологической памяти. Она позволяет механизмам приобретённого иммунитета развивать более быструю и более сильную ответную реакцию при каждом появлении такого же возбудителя.

Как врождённый, так и приобретённый иммунитет, зависят от способности иммунной системы отличать свои молекулы от чужих. В иммунологии под своими молекулами понимают те компоненты организма, которые иммунная система способна отличить от чужеродных. Напротив, чужими называют молекулы, которые распознаются как чужеродные. Распознаваемые молекулы называют антигенами, которые в настоящее время определяют как вещества, связываемые специфическими иммунными рецепторами системы приобретённого иммунитета.

Поверхностные барьеры

Организмы защищены от инфекций рядом механических, химических и биологических барьеров.

Примерами механических барьеров , служащих первым этапом защиты от инфекции, могут служить восковое покрытие многих листьев растений, экзоскелет членистоногих, скорлупа яиц и кожа. Однако организм не может быть полностью отграничен от внешней среды, поэтому существуют и другие системы, защищающие внешние сообщения организма - дыхательная, пищеварительная и мочеполовая системы. Эти системы можно разделить на постоянно действующие и включающиеся в ответ на вторжение.

Пример постоянно действующей системы - крохотные волоски на стенках трахеи, называемые ресничками, которые совершают быстрые движения, направленные вверх, удаляя всякую пыль, пыльцу растений, или другие мелкие инородные объекты, чтобы они не могли попасть в легкие. Аналогичным образом, изгнание микроорганизмов осуществляется при помощи промывного действия слёз и мочи. Слизь, секретируемая в дыхательную и пищеварительную систему, служит для связывания и обездвиживания микроорганизмов.

Если постоянно действующих механизмов оказывается недостаточно, то включаются "аварийные" механизмы очистки организма, такие как кашель, чихание, рвота и диарея.

Помимо этого, существуют химические защитные барьеры . Кожа и дыхательные пути выделяют антимикробные пептиды (белки)

Такие ферменты, как лизоцим и фосфолипаза A, содержатся в слюне, слезах и грудном молоке, и также обладают антимикробным действием. Выделения из влагалища служат химическим барьером после начала менструаций, когда они становятся слабокислыми. Сперма содержит дефенсины и цинк для уничтожения возбудителей. В желудке соляная кислота и протеолитические ферменты служат мощными химическими защитными факторами в отношении попавших с пищей микроорганизмов.

В мочеполовом и желудочно-кишечном трактах существуют биологические барьеры , представленные дружественными микроорганизмами - комменсалами. Приспособившаяся к обитанию в этих условиях неболезнетворная микрофлора конкурирует с патогенными бактериями за пищу и пространство, таким образом вытесняя их их прибарьерных областей. Это снижает вероятность достижения болезнетворными микробами достаточных для возникновения инфекции количеств.

Врождённый иммунитет

Если микроорганизму удается проникнуть через первичные барьеры, он сталкивается с клетками и механизмами системы врождённого иммунитета. Врождённая иммунная защита неспецифична, то есть её звенья распознают и реагируют на чужеродные тела независимо от их особенностей по общепринятым механизмам. Эта система не создает длительной невосприимчивости к конкретной инфекции.

К неспецифическим иммунным реакциям относятся воспалительные реакции, система комплемента, а также механизмы киллинга, осуществляемые неспецифически, и фагоцитоз.

Данные механизмы рассмотрены в разделе "Механизмы", система комплемента - в разделе "Молекулы".

Приобретённый иммунитет

Система приобретённого иммунитета появилась в ходе эволюции низших позвоночных. Она обеспечивает более интенсивный иммунный ответ, а также иммунологическую память, благодаря которой каждый чужеродный микроорганизм «запоминается» по уникальным для него антигенам. Система приобретённого иммунитета антигенспецифична и требует распознавания специфических чужих («не своих») антигенов в процессе, называемом презентацией антигена. Специфичность антигена позволяет осуществлять реакции, которые предназначены конкретным микроорганизмам или инфицированным ими клеткам. Способность к осуществлению таких узконаправленных реакций поддерживается в организме «клетками памяти». Если макроорганизм инфицируется микроорганизмом более одного раза, эти специфические клетки памяти используются для быстрого уничтожения такого микроорганизма.

Клетки-эффекторы специфического иммунного ответа рассмотрены в разделе "Клетки", механизмы развертывания иммунного ответа с их участием - в разделе "Механизмы"

Для укрепления иммунитета, а так же в качестве профилактики вам помогут целебные китайские ягоды Годжи, подробнее http://yagodygodzhi.ru/ . Как эти ягодки действуют на организм можно прочитать в статье

Проникающие в организм яды, как и другие чужеродные соединения, могут подвергаться разнообразным биохимическим превращениям (биотрансформации ), в результате которых чаще всего образуются менее токсичные вещества (обезвреживание , или детоксикация ). Но известно немало случаев усиления токсичности ядов при изменении их структуры в организме. Есть и такие соединения, характерные свойства которых начинают проявляться только вследствие биотрансформации. В то же время определенная часть молекул яда выделяется из организма без каких-либо изменений или вообще остается в нем на более или менее длительный период, фиксируясь белками плазмы крови и тканей. В зависимости от прочности образующегося комплекса "яд-белок" действие яда при этом замедляется или же утрачивается совсем. Кроме того, белковая структура может быть лишь переносчиком ядовитого вещества, доставляющим его к соответствующим рецепторам. *

* ( Термином "рецептор" (или "рецепторная структура") мы будем обозначать "точку приложения" ядов: фермент, объект его каталитического воздействия (субстрат), а также белковые, липидные, мукополисахаридные и прочие тела, составляющие структуру клеток или участвующие в обмене веществ. Молекулярно-фармакологические представления о сущности этих понятий будут рассмотрены в гл. 2 )

Изучение процессов биотрансформации позволяет решить ряд практических вопросов токсикологии. Во-первых, познание молекулярной сущности детоксикации ядов дает возможность оцепить защитные механизмы организма и на этой основе наметить пути направленного воздействия на токсический процесс. Во-вторых, о величине поступившей в организм дозы яда (лекарства) можно судить по количеству выделяющихся через почки, кишечник и легкие продуктов их превращения - метаболитов, * что дает возможность контролировать состояние здоровья людей, занятых производством и применением токсичных веществ; к тому же при различных заболеваниях образование и выделение из организма многих продуктов биотрансформации чужеродных веществ существенно нарушается. В-третьих, появление ядов в организме часто сопровождается индукцией ферментов, катализирующих (ускоряющих) их превращения. Поэтому, влияя с помощью определенных веществ на активность индуцированных ферментов, можно ускорить или затормозить биохимические процессы превращений чужеродных соединений.

* ( Под метаболитами принято также понимать различные биохимические продукты нормального обмена веществ (метаболизма) )

В настоящее время установлено, что процессы биотрансформации чужеродных веществ протекают в печени, желудочно-кишечном тракте, легких, почках (рис. 1). Кроме того, согласно результатам исследований профессора И. Д. Гадаскиной, * немалое число токсичных соединений подвергается необратимым превращениям и в жировой ткани. Однако главное значение здесь имеет печень, точнее - микросомальная фракция ее клеток. Именно в клетках печени, в их эндоплазматическом ретикулуме, локализуется большинство ферментов, катализирующих превращения чужеродных веществ. Сам ретикулум представляет собой сплетение линопротеидных канальцев, пронизывающих цитоплазму (рис. 2). Наивысшая ферментативная активность связывается с так называемым гладким ретикулумом, который в отличие от шероховатого не имеет на своей поверхности рибосом. ** Неудивительно поэтому, что при заболеваниях печени резко повышается чувствительность организма ко многим чужеродным веществам. Надо отметить, что, хотя число микросомальных ферментов невелико, они обладают очень важным свойством - высоким сродством к различным чужеродным веществам при относительной химической неспецифичности. Это создает им возможность вступать в реакции обезвреживания практически с любым химическим соединением, попавшим во внутренние среды организма. В последнее время доказано присутствие ряда таких ферментов в других органоидах клетки (например, в митохондриях), а также в плазме крови и в микроорганизмах кишечника.

* ( Гадаскина И. Д. Жировая ткань и яды. - В кн.: Актуальные вопросы промышленной токсикологии/Под ред. Н. В. Лазарева, А. А. Голубева, Е. Т. Лыхипой. Л., 1970, с. 21-43 )

** ( Рибосомы - сферические клеточные образования диаметром 15-30 нм, являющиеся центрами синтеза белков, в том числе ферментов; содержат рибонуклеиновую кислоту (РНК) )

Считается, что главным принципом превращения в организме чужеродных соединений является обеспечение наибольшей скорости их выведения путем перевода из жирорастворимых в более водорастворимые химические структуры. В последние 10-15 лет при изучении сущности биохимических превращений чужеродных соединений из жирорастворимых в водорастворимые все большее значение придается так называемой монооксигеназной ферментной системе со смешанной функцией, которая содержит особый белок - цитохром Р-450. Он близок по строению к гемоглобину (в частности, содержит атомы железа с переменной валентностью) и является конечным звеном в группе окисляющих микросомальных ферментов - биотрансформаторов, сосредоточенных преимущественно в клетках печени. * В организме цитохром Р-450 может находиться в 2 формах: окисленной и восстановленной. В окисленном состоянии он вначале образует с чужеродным веществом комплексное соединение, которое после этого восстанавливается специальным ферментом - цитохромредуктазой. Затем это, уже восстановленное, соединение реагирует с активированным кислородом, в результате чего образуется окисленное и, как правило, нетоксичное вещество.

* ( Ковалев И. Е., Маленков А. Г. Поток чужеродных веществ: влияние на человечество, - Природа, 1980, № 9, с. 90-101 )

В основе биотрансформации токсичных веществ лежит несколько типов химических реакций, в результате которых происходит присоединение или же отщепление метальных (-СН 3), ацетильных (СН 3 СОО-), карбоксильных (-СООН), гидроксильных (-ОН) радикалов (групп), а также атомов серы и серосодержащих группировок. Немалое значение имеют процессы распада молекул ядов вплоть до необратимой трансформации их циклических радикалов. Но особую роль среди механизмов обезвреживания ядов играют реакции синтеза , или конъюгации , в результате которых образуются нетоксичные комплексы - конъюгаты. При этом биохимическими компонентами внутренней среды организма, вступающими в необратимое взаимодействие с ядами, являются: глюкуроновая кислота (С 5 Н 9 О 5 СООН), цистеин(), глицин (NH 2 -CH 2 -CОOH),серная кислота и др. Молекулы ядов, содержащие несколько функциональных групп, могут трансформироваться посредством 2 и более метаболических реакций. Попутно отметим одно существенное обстоятельство: поскольку превращение и детоксикация ядовитых веществ за счет реакций конъюгации связаны с расходованием важных для жизнедеятельности веществ, то эти процессы могут вызвать дефицит последних в организме. Таким образом, появляется опасность другого рода - возможность развития вторичных болезненных состояний из-за нехватки необходимых метаболитов. Так, детоксикация многих чужеродных веществ находится в зависимости от запасов гликогена в печени, поскольку из него образуется глюкуроновая кислота. Поэтому при поступлении в организм больших доз веществ, обезвреживание которых осуществляется посредством образования эфиров глюкуроновой кислоты (например, бензольных производных), снижается содержание гликогена - основного легко мобилизуемого резерва углеводов. С другой стороны, есть вещества, которые под воздействием ферментов способны отщеплять молекулы глюкуроновой кислоты и тем самым способствовать обезвреживанию ядов. Одним из таких веществ оказался глицирризин, входящий в состав солодкового корня. Глицирризин содержит 2 молекулы глюкуроновой кислоты в связанном состоянии, которые освобождаются в организме, и это, по-видимому, определяет защитные свойства солодкового корня при многих отравлениях, известные издавна медицине Китая, Тибета, Японии. *

* ( Сало В. М. Растения и медицина. М.: Наука, 1968 )

Что касается выведения из организма токсичных веществ и продуктов их превращения, то в этом процессе определенную роль играют легкие, органы пищеварения, кожа, различные железы. Но наибольшее значение здесь имеют ночки. Вот почему при многих отравлениях с помощью специальных средств, усиливающих отделение мочи, добиваются быстрейшего удаления ядовитых соединений из организма. Вместе с тем приходится считаться и с повреждающим воздействием на почки некоторых выводимых с мочой ядов (например, ртути). Кроме того, в почках могут задерживаться продукты превращения токсичных веществ, как это имеет место при тяжелых отравлениях этиленгликолем. * При его окислении в организме образуется щавелевая кислота и в почечных канальцах выпадают кристаллы оксалата кальция, препятствующие мочеотделению. Вообще подобные явления наблюдаются тогда, когда концентрация выводимых через почки веществ высока.

* ( Этиленгликоль используется в качестве антифриза - вещества, понижающего температуру замерзания горючих жидкостей в двигателях внутреннего сгорания )

Чтобы понять биохимическую сущность процессов превращения в организме ядовитых веществ, рассмотрим несколько примеров, касающихся распространенных компонентов химического окружения современного человека.

Так, бензол , который, подобно другим ароматическим углеводородам, широко используется в качестве растворителя различных веществ и как промежуточный продукт при синтезе красителей, пластических масс, лекарств и других соединений, трансформируется в организме по 3 направлениям с образованием токсичных метаболитов (рис. 3). Последние выделяются через почки. Бензол может очень долго (по некоторым данным, до 10 лет) задерживаться в организме, в особенности в жировой ткани.

Определенный интерес представляет изучение процессов превращения в организме токсичных металлов , оказывающих все более широкое влияние на человека в связи с развитием науки и техники и освоением природных богатств. Прежде всего надо отметить, что в результате взаимодействия с окислительно-восстановительными буферными системами клетки, при котором осуществляется перенос электронов, валентность металлов меняется. При этом переход в состояние низшей валентности обычно связывается с уменьшением токсичности металлов. Например, ионы шестивалентного хрома переходят в организме в малотоксичную трехвалентную форму, а трехвалентный хром удается достаточно быстро удалить из организма с помощью некоторых веществ (пиросульфата натрия, виннокаменной кислоты и др.). Ряд металлов (ртуть, кадмий, медь, никель) активно связывается с биокомплексами, в первую очередь - с функциональными группировками ферментов (-SH, -NH 2 , -СООН и др.), что подчас определяет избирательность их биологического действия.

В числе ядохимикатов - веществ, предназначенных для уничтожения вредных живых существ и растений, имеются представители различных классов химических соединений, в той или иной мере токсичных для человека: хлорорганических, фосфорорганических, металлоорганических, нитрофенольных, цианистых и др. Согласно имеющимся данным, * около 10% всех смертельных отравлений в настоящее время вызывается ядохимикатами. Наиболее значимыми из них, как известно, являются ФОС. Гидролизуясь, они, как правило, утрачивают токсичность. В противоположность гидролизу окисление ФОС почти всегда сопровождается усилением их токсичности. Это можно видеть, если сопоставить биотрансформацию 2 инсектицидов - диизопропилфторфосфата, который теряет токсические свойства, отщепляя при гидролизе атом фтора, и тиофоса (производное тиофосфорной кислоты), который окисляется в значительно более токсичный фосфакол (производное ортофосфорной кислоты).

* ( Буслович С. Ю., Захаров Г. Г. Клиника и лечение острых отравлений ядохимикатами (пестицидами). Минск: Беларусь, 1972 )


Среди широко используемых лекарственных веществ снотворные препараты являются наиболее частыми источниками отравлений. Процессы их превращений в организме изучены достаточно хорошо. В частности, показано, что биотрансформация одного из распространенных производных барбитуровой кислоты - люминала (рис. 4) - протекает медленно, и это лежит в основе его достаточно длительного снотворного действия, так как оно зависит от количества неизмененных молекул люминала, контактирующих с нервными клетками. Распад барбитурового кольца приводит к прекращению действия люминала (как, впрочем, и других барбитуратов), который в лечебных дозах вызывает сон длительностью до 6 ч. В этой связи небезынтересна судьба в организме другого представителя барбитуратов - гексобарбитала. Его снотворное действие намного короче даже при применении значительно больших, чем люминала, доз. Полагают, что это зависит от большей скорости и от большего числа путей инактивации гексобарбитала в организме (образование спиртов, кетонов, деметилированных и других производных). С другой стороны, те барбитураты, которые сохраняются в организме почти в неизмененном виде, как например барбитал, оказывают более длительное снотворное действие, чем люминал. Из этого следует, что вещества, которые в неизмененном виде выводятся с мочой, могут вызвать интоксикацию, если почки не справляются с их удалением из организма.

Важно также отметить, что для понимания непредвиденного токсического эффекта при одновременном применении нескольких лекарств должное значение надо придавать ферментам, влияющим на активность комбинирующихся веществ. Так, например, лекарственный препарат физостигмин при совместном применении с новокаином делает последний весьма токсичным веществом, так как блокирует фермент (эстеразу), гидролизирующий новокаин в организме. Подобным же образом проявляет себя и эфедрин, связывая оксидазу, инактивирующую адреналин и тем самым удлиняя и усиливая действие последнего.

Большую роль в биотрансформации лекарств играют процессы индукции (активации) и торможения активности микросомалыных ферментов различными чужеродными веществами. Так, этиловый алкоголь, некоторые инсектициды, никотин ускоряют инактивацию многих лекарственных препаратов. Поэтому фармакологи обращают внимание на нежелательные последствия контакта с названными веществами на фоне лекарственной терапии, при котором лечебный эффект ряда лекарств снижается. B то же время надо учитывать, что если контакт с индуктором микросомальных ферментов внезапно прекращается, то это может привести к токсическому действию лекарств и потребует уменьшения их доз.

Надо также иметь в виду, что, по данным Всемирной организации здравоохранения (ВОЗ), у 2,5% населения значительно повышен риск проявления токсичности лекарств, так как генетически обусловленный период их полураспада в плазме крови у данной группы людей в 3 раза больше среднего. При этом около трети всех описанных у человека ферментов во многих этнических группах представлены различными по своей активности вариантами. Отсюда - индивидуальные различия в реакциях па тот или иной фармакологический агент, зависящие от взаимодействия многих генетических факторов. Так, установлено, что примерно у одного на 1-2 тыс. человек резко снижена активность сывороточной холинэстеразы, которая гидролизует дитилин - средство, применяемое для расслабления скелетной мускулатуры на несколько минут при некоторых хирургических вмешательствах. У таких людей действие дитилина резко удлиняется (до 2 ч и более) и может стать источником тяжелого состояния.

Среди людей, живущих в странах Средиземноморья, в Африке и Юго-Восточной Азии, имеется генетически обусловленная недостаточность активности фермента глюкозо-6-фосфат-дегидрогеназы эритроцитов (снижение до 20% от нормы). Эта особенность делает эритроциты малоустойчивыми к ряду медикаментов: сульфаниламидам, некоторым антибиотикам, фенацетину. Вследствие распада эритроцитов у таких лиц на фоне лекарственного лечения возникают гемолитическая анемия и желтуха. Совершенно очевидно, что профилактика этих осложнений должна заключаться в предварительном определении активности соответствующих ферментов у больных.

Хотя приведенный материал лишь в общих чертах дает представление о проблеме биотрансформации токсичных веществ, он показывает, что организм человека обладает многими защитными биохимическими механизмами, которые в определенной степени предохраняют его от нежелательного воздействия этих веществ, по крайней мере - от небольших их доз. Функционирование такой сложной барьерной системы обеспечивается многочисленными ферментными cруктурами, активное влияние на которые дает возможность изменять течение процессов превращения и обезвреживания ядов. Но это уже - одна из следующих наших тем. При дальнейшем изложении мы будем еще возвращаться к рассмотрению отдельных аспектов превращения в организме некоторых токсичных веществ в той мере, в какой это необходимо для понимания молекулярных механизмов их биологического действия.


A. фагоциты

B. тромбоциты

C. ферменты

D. гормоны

E. эритроциты

371. Заболевание СПИДом может привести:

A. к полному разрушению иммунной системы организма

B. к несвертываемости крови

C. к понижению содержания тромбоцитов

D. к резкому повышению содержания тромбоцитов в крови

E. к понижению гемоглобина в крови и развитию малокровия

372. Предупредительные прививки защищают от:

A. большинства инфекционных заболеваний

B. любых заболеваний

C. ВИЧ- инфекции и СПИДа

D. хронических заболеваний

E. аутоиммунных заболеваний

373. При предупредительной прививке в организм вводится:

A. убитые или ослабленные микроорганизмы

B. готовые антитела

C. лейкоциты

D. антибиотики

E. гормоны

374 Кровь 3 группы можно переливать людям с:

A. 3 и 4 группой крови

B. 1 и 3 группой крови

C. 2 и 4 группой крови

D. 1 и 2 группой крови

E. 1 и 4 группой крови

375. Какие вещества обезвреживают в организме человека и животных чужеродные тела и их яды?

A. антитела

B. ферменты

C. антибиотики

D. гормоны

376. Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят:

A. фагоциты и лимфоциты

B. ослабленных возбудителей болезни

C. готовые антитела

D. ферменты

E. эритроциты и тромбоциты

377. Кто первым изучил в 1880–1885 гг. получил вакцины против куриной холеры, сибирской язвы и бешенства:

A. Л. Пастер

B. И.П. Павлов

C. И.М. Сеченов

D. А.А. Ухтомский

E. Н.К Кольцов

378. Биопрепараты для создания у людей иммунитета к инфекционным заболеваниям?

A. Вакцины

B. Ферменты

D. Гормоны

E. Сыворотки

379. Живые вакцины содержат:

A. Ослабленные бактерии или вирусы

B. Ферменты

D. Антитоксины

E. Гормоны

380. Анатоксины:

A. Мало реактогенны, способны формировать напряженный иммунитет на 4–5 лет.

381. Фаги:

A. Представляют собой вирусы, способные проникать в бактериальную клетку, репродуцироваться и вызывать ее лизис.

B. Представляют собой химические вакцины.

C. Применяются для профилактики брюшного тифа, паратифов А и В

D. Используются для профилактики тифа, паратифов, коклюша, холеры

E. Более иммуногенны, создают иммунитет высокой напряженности

382. Применяются для фагопрофилактики и фаготерапии инфекционных заболеваний:

A. Бактериофаги

B. Антитоксины

C. Живые вакцины

D. Полные антигены

E. Убитые вакцины

383. Мероприятие, направленное на поддержание иммунитета, выработанного предыдущими вакцинациями :

A. Ревакцинация

B. Вакцинация населения

C. Бактериальная контоминация

D. Стабилизация

E. Ферментация

384. На развитие поствакцинального иммунитета влияют следующие факторы, зависящие от самой вакцины:

A. Все ответы верны

B. чистота препарата;

C. время жизни антигена;

E. наличие протективных антигенов;