» »

Коэффициент b в линейной функции. Линейная функция

30.09.2019

В 7-м классе мы изучали функции у = С, у = kx, у = kx + m, у = х 2 и пришли в итоге к выводу о том, что уравнение с двумя переменными вида у = f(x) (функция) есть математическая модель, удобная для того, чтобы, задав конкретное значение независимой переменной х (аргумента), вычислить соот-

ветствующее значение зависимой переменной у. Например, если дана функция у = х 2 , т.е. f(x) = х 2 , то при х = 1 получаем у = 1 2 = 1; короче это записывают так: f(1) = 1. При х = 2 получаем f(2)= 2 2 = 4, т. е. у = 4; при х = - 3 получаем f(- 3) = (- З) 2 = 9, т. е. у = 9, и т. д.

Уже в 7-м классе мы с вами начали понимать, что в равенстве у = f(х) правая часть, т.е. выражение f(x), не исчерпывается перечисленными выше четырьмя случаями (С, kx, kx + m, х 2).
Так например, нам уже встречались кусочные функции, т. е. функции, заданные разными формулами на разных промежутках. Вот одна из таких функций:

у = f(x), где

Помните, как строить графики таких функций? Сначала надо построить параболу у = х 2 и взять ее часть при х < 0 (левая ветвь параболы, рис. 1), затем надо построить прямую у = 2х и взять ее часть при х > 0 (рис. 2). И, наконец, надо обе выделенные части объединить на одном рисунке, т. е. построить на одной координатной плоскости (см. рис. 3).


Теперь наша задача состоит в следующем: пополнить запас изученных функций. В реальной жизни встречаются процессы, описываемые различными математическими моделями вида у = f(x), не только теми, что мы перечислили выше. В этом параграфе мы рассмотрим функцию у = kx 2 , где коэффициент k — любое отличное от нуля число.


На самом деле функция у = kx 2 в одном случае вам немного знакома. Смотрите: если k = 1, то получаем у = х 2 ; эту функцию вы изучили в 7-м классе и, наверное, помните, что ее графиком является парабола (рис. 1). Обсудим, что происходит при других значениях коэффициента k.
Рассмотрим две функции: у = 2х 2 и у = 0,5x 2 . Составим таблицу значений для первой функции у = 2х 2:

Построим точки (0; 0), (1; 2), (-1; 2), (2; 8), (-2; 8), (1,5; 4,5), (-1,5; 4,5) на координатной плоскости (рис. 4); они намечают некоторую линию, проведем ее

(рис. 5).
Составим таблицу значений для второй функции у = 0,5x 2:

Построим точки (0; 0), (1; 0,5), (-1; 0,5), (2; 2), (-2; 2), C; 4,5), (-3; 4,5) на координатной плоскости (рис. 6); они намечают некоторую линию, проведем ее (рис. 7)

.

Точки, изображенные на рис. 4 и 6, называют иногда контрольными точками для графика соответствующей функции.

Сравните рисунки 1, 5 и 7. Не правда ли, проведенные линии похожи? Каждую из них называют параболой; при этом точку (0; 0) называют вершиной параболы, а ось у — осью симметрии параболы. От величины коэффициента k зависит «скорость устремления» ветвей параболы вверх или, как еще говорят,
«степень крутизны» параболы. Это хорошо видно на рис. 8, где все три построенные выше параболы расположены на одной координатной плоскости.

Точно так же обстоит дело с любой другой функцией вида у = kx 2 , где k > 0. Графиком ее является парабола с вершиной в начале координат, ветви параболы направлены вверх, причем тем круче, чем больше коэффициент k. Ось у является осью симметрии параболы. Кстати, ради краткости речи математики часто вместо длинной фразы «парабола, служащая графиком функции у = kx 2 », говорят «парабола у = кх 2 », а вместо термина «ось симметрии параболы» используют термин «ось параболы».

Вы замечаете, что имеется аналогия с функцией у = kx? Если k > 0, то графиком функции у = kx является прямая, проходящая через начало координат (помните, мы говорили коротко:прямая у = kx), причем и здесь от величины коэффициента k зависит «степень крутизны» прямой. Это хорошо видно на
рис. 9, где в одной системе координат изображены графики линейных функций у = kx при трех значениях коэффициента


Вернемся к функции у = kx 2 . Выясним, как обстоит дело в случае отрицательного коэффициента ft. Построим, например, график функции

у = - х 2 (здесь k = - 1). Составим таблицу значении:

Отметим точки (0; 0), (1; -1), (-1; -1), (2; -4), (-2; -4), (3; -9), (- 3; - 9) на координатной плоскости (рис. 10); они намечают некоторую линию, проведем ее (рис. 11). Это — парабола с вершиной в точке (0; 0), ось у — ось симметрии, но в отличие от случая, когда k > 0, на этот раз ветви параболы направлены вниз. Аналогично обстоит дело и для других отрицательных значений коэффициента k.


Итак, графиком функции является парабола с вершиной в начале координат; ось у является осью параболы; ветви параболы направлены вверх приk>0 u вниз при k<0.

Отметим еще, что парабола у = kx 2 касается оси х в точке (0; 0), т. е. одна ветвь параболы плавно переходит в другую, как бы прижимаясь к оси х.
Если построить в одной системе координат графики функций у = х 2 и у = - х2, то нетрудно заметить, что эти параболы симметричны друг другу относительно оси х, что хорошо видно на рис. 12. Точно так же симметричны друг другу относительно оси х параболы у = 2х 2 и у = - 2х 2 (не поленитесь, постройте эти
две параболы в одной системе координат и убедитесь в справедливости сделанного утверждения).

Вообще, график функции у = - f(x) симметричен графику функции у = f(x) относительно оси абсцисс.

Свойства функции у = kx 2 при k > 0

Описывая свойства этой функции, мы будем опираться на ее геометрическую модель — параболу (рис. 13).

1. Так как для любого значения х по формуле у = kx 2 можно вычислить соответствующее значение у, то функция определена в любой точке х (при любом значении аргумента х). Короче это записывают так: область определения функции есть (-оо, +оо), т. е. вся координатная прямая.


2. у = 0 при х = 0; у > О при . Это видно и по графику функции (он весь расположен выше оси х), но можно обосновать и без помощи графика: если

То kx 2 > О как произведение двух положительных чисел k и х 2 .

3. у = kx 2 — непрерывная функция. Напомним, что этот термин мы рассматриваем пока как синоним предложения «график функции есть сплошная линия, которую можно начертить, не отрывая карандаша от бумаги». В старших классах будет дано более точное математическое истолкование понятия непрерывности функции, не опирающееся на геометрическую иллюстрацию.

4.y/ наим = 0 (достигается при х = 0); у наи6 не существует.

Напомним, что {/наим — это наименьшее значение функции, а Унаиб. — наибольшее значение функции на заданном промежутке; если промежуток не указан, то унаим- и у наиб, — соответственно наименьшее и наибольшее значения функции в области определения.

5. Функция у = kx 2 возрастает при х > О и убывает при х < 0.

Напомним, что в курсе алгебры 7-го класса мы договорились называть функцию, график которой на рассматриваемом промежутке идет слева направо как бы «в горку», возрастающей, а функцию, график которой на рассматриваемом промежутке идет слева направо как бы «под горку», — убывающей. Более точно можно сказать так: функцию у = f (x) называют возрастающей на промежутке X, если на этом промежутке большему значению аргумента соответствует
большее значение функции; функцию у = f (x) называют убывающей на промежутке X, если на этом промежутке большему значению аргумента соответствует меньшее значение функции.

В учебнике «Алгебра—7» процесс перечисления свойств функции мы называли чтением графика. Процесс чтения графика будет у нас постепенно становиться все насыщеннее и интереснее — по мере изучения новых свойств функций. Те пять свойств, которые перечислены выше, мы обсуждали в 7-м классе для изученных там функций. Добавим одно новое свойство.

Функцию у = f(x) называют ограниченной снизу, если все значения функции больше некоторого числа. Геометрически это означает, что график функции расположен выше некоторой прямой, параллельной оси х.

А теперь посмотрите: график функции у = kx 2 расположен выше прямой у = - 1 (или у = - 2, это неважно) — она проведена на рис. 13. Значит, у — kx2 (k > 0) — ограниченная снизу функция.

Наряду с функциями, ограниченными снизу, рассматривают и функции, ограниченные сверху. Функцию у — f(x) называют ограниченной сверху, если все значения функции меньше некоторого числа. Геометрически это означает, что график функции расположен ниже некоторой прямой, параллельной оси х.
Имеется ли такая прямая для параболы у = kx 2 , где k > 0? Нет. Это значит, что функция не является ограниченной сверху.

Итак, мы получили еще одно свойство, добавим его к тем пяти, что указаны выше.

6. Функция у = kx 2 (k > 0) ограничена снизу и не ограничена сверху.

Свойства функции у = kx 2 при k < 0

При описании свойств этой функции мы опираемся на ее геометрическую модель — параболу (рис. 14).

1.Область определения функции — (—оо, +оо).

2. у = 0 при х = 0; у < 0 при .

З.у = kx 2 — непрерывная функция.
4. у наи6 = 0 (достигается при х = 0), унаим не существует.

5. Функция возрастает при х < 0, убывает при х > 0.

6.Функция ограничена сверху и не ограничена снизу.

Дадим пояснения последнему свойству: имеется прямая, параллельная оси х (например, у = 1, она проведена на рис. 14), такая, что вся парабола лежит ниже этой прямой; это значит, что функция ограничена сверху. С другой стороны, нельзя провести такую прямую, параллельную оси х, чтобы вся парабола была расположена выше этой прямой; это значит, что функция не ограничена снизу.

Использованный выше порядок ходов при перечислении свойств функции не является законом, пока он сложился хронологически именно таким.

Более-менее определенный порядок ходов мы выработаем постепенно и унифицируем в курсе алгебры 9-го класса.

Пример 1. Найти наименьшее и наибольшее значения функции у = 2х 2 на отрезке: а) ; б) [- 2, - 1]; в) [- 1, 1,5].

Решение.
а) Построим график функции у = 2х 2 и выделим его часть на отрезке (рис. 15). Замечаем, что 1/наим. = 0 (достигается при х = 0), а у наиб = 8 (достигается при х = 2).

б) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 2, - 1] (рис. 16). Замечаем, что 2/наим = 2 (достигается при х = - 1), а y наиб = 8 (достигается при х = - 2).

в) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 1, 1,5] (рис. 17). Замечаем, что унанм = 0 (достигается при х = 0), а y наиб достигается в точке х = 1,5; подсчитаем это значение:(1,5) = 2-1,5 2 = 2- 2,25 = 4,5. Итак, y наиб =4,5.


Пример 2. Решить уравнение - х 2 = 2х - 3.

Решение. В учебнике «Алгебра—7» мы выработали алгоритм графического решения уравнений, напомним его.

Чтобы графически решить уравнение f(x) = g (x), нужно:

1) рассмотреть две функции у = -x 2 и у = 2x -3;
2) построить график функции i/ = / (х) ;
3) построить график функции у = g (x);
4) найти точки пересечения построенных графиков; абсцис-
сы этих точек — корни уравнения f(x) = g (x).
Применим этот алгоритм к заданному уравнению.
1) Рассмотрим две функции: у = - х2 и у = 2х - 3.
2) Построим параболу — график функции у = - х 2 (рис. 18).

3) Построим график функции у = 2х - 3. Это — прямая, для ее построения достаточно найти любые две точки графика. Если х = 0, то у = - 3; если х = 1,

то у = -1. Итак, нашли две точки (0; -3) и (1; -1). Прямая, проходящая через эти две точки (график функции у = 2х - 3), изображена на том же

чертеже (см. рис. 18).

4) По чертежу находим, что прямая и парабола пересекаются в двух точках А(1; -1) и Б(-3; -9). Значит, данное уравнение имеет два корня: 1 и - 3 — это абсциссы точек А и В.

Ответ: 1,-3.


Замечание. Разумеется, нельзя слепо доверять графическим иллюстрациям. Может быть, нам только кажется, что точка А имеет координаты (1; — 1), а на
самом деле они другие, например (0,98; - 1,01)?

Поэтому всегда полезно проверить себя. Так, в рассмотренном примере надо убедиться, что точка А(1; —1) принадлежит параболе у = — х 2 (это легко — достаточно подставить в формулу у = — х 2 координаты точки А; получим - 1 = - 1 2 — верное числовое равенство) и прямой у = 2х - 3 (и это легко — достаточно подставить в формулу у = 2х - 3 координаты точки А; получим - 1 =2-3 — верное числовое равенство). То же самое надо сделать и для
точки 8. Эта проверка показывает, что в рассмотренном уравнении графические наблюдения привели к верному результату.

Пример 3. Решить систему уравнений

Решение. Преобразуем первое уравнение системы к виду у = - х 2 . Графиком этой функции является парабола, изображенная на рис. 18.
Преобразуем второе уравнение системы к виду у = 2х - 3. Графиком этой функции является прямая, изображенная на рис. 18.

Парабола и прямая пересекаются в точках А(1; -1) и В (- 3; - 9). Координаты этих точек и служат решениями заданной системы уравнений.

Ответ: (1; -1), (-3; -9).

Пример 4. Дана функция у — f (x), где

Требуется:

а) вычислить f(-4), f(-2), f(0), f(1,5), f(2), f(3);

б) построить график функции;

в) с помощью графика перечислить свойства функции.

Решение,

а) Значение х = - 4 удовлетворяет условию —, следовательно, f(-4) надо вычислять по первой строке задания функции.Имеем f(x) = - 0,5x2, значит,
f(-4) = -0,5. (-4) 2 = -8.
Аналогично находим:

f(-2) = -0,5. (-2) 2 =-2;
f(0) = -0,5. 0 2 = 0.

Значение удовлетворяет условию , поэтому надо вычислять по второй строке задания функции. Имеем f(х) = х + 1, значит,

Значение х = 1,5 удовлетворяет условию 1 < х < 2, т. е. f(1,5) надо вычислять по третьей строке задания функции. Имеем f (х) = 2х 2 , значит,
f(1,5) = 2-1,5 2 = 4,5.
Аналогично получим
f(2)= 2. 2 2 =8.
Значение х = 3 не удовлетворяет ни одному из трех условий задания функции, а потому f(3) в данном случае вычислить нельзя, точка х = 3 не принадлежит области определения функции. Задание, состоящее в том, чтобы вычислить f(3), — некорректно.

б) Построение графика осуществим «по кусочкам». Сначала построим параболу у = -0,5x 2 и выделим ее часть на отрезке [-4, 0] (рис. 19). Затем построим прямую у = х + 1 и. выделим ее часть на полуинтервале (0, 1] (рис. 20). Далее построим параболу у = 2х 2 и выделим ее часть на полуинтервале

(1, 2] (рис. 21).

Наконец, все три «кусочка» изобразим в одной системе координат; получим график функции у = f(x) (рис. 22).

в) Перечислим свойства функции или, как мы условились говорить, прочитаем график.

1. Область определения функции — отрезок [—4, 2].

2. у = 0 при х = 0; у > 0 при 0<х<2;у<0 при - 4 < х < 0.

3. Функция претерпевает разрыв при х = 0.

4. Функция возрастает на отрезке [-4, 2].

5. Функция ограничена и снизу и сверху.

6. y наим = -8 (достигается при х = -4); y наи6 . = 8 (достигается при х = 2).

Пример 5. Дана функция у = f(x) , где f(x) = Зх 2 . Найти:

f(1), f(- 2), f(а), f(2а), f(а + 1), f(-х), f(Зх),f(x - 1),
f(x + а), f(x) + 5, f(х) + b, f(x + а) + b, f(x 2), f(2х 3).

Решение. Так как f (х) = Зх 2 , то последовательно получаем:

f(1) =3.1 2 = 3;
f(a) = За 2 ;
f(а+1) = 3(а + 1) 2 ;
f(3х) = 3
.(3х) 2 = 27х 2 ;
f(x + а) = 3(х + а) 2 ;

f(x 2) +b = 3x 2 +b
f(x 2) = 3. (x 2) 2

F(- 2) = З. (-2) 2 = 12
f(2a) =З. (2a) 2 =12a 2

F(x) =З. (-x) 2 =3x 2

F(-x)+ 5 =3x 2 +5
f{x + а) + b = 3 (x + a) 2 + b;
f(2x 3) = 3. (2x 3) 2

Данный видеоурок по курсу математики познакомит вас со свойствами функции y = k/x, при условии, что значение k будет отрицательным.
В наших предыдущих видеоуроках вы познакомились с самой функцией y равно k деленное на x, ее графиком, который называется «гипербола», а также свойствами графика при положительном значении k. Данное видео познакомит вас со свойствами коэффициента k при отрицательном его значении, то есть меньше нуля.

Свойства равенства, при котором y равняется коэффициенту k, деленному на независимую переменную x, при условии, что коэффициент имеет отрицательное значение, представлены в видеоматериале.
При описании свойств этой функции, прежде всего, опираются на ее геометрическую модель - гиперболу.

Свойство 1. Область определения функции состоит из всех чисел, однако следует, что x не может равняться 0, потому что на ноль делить нельзя.
Свойство 2. у больше нуля при условии, что х меньше нуля; и, соответственно, наоборот, у меньше нуля при значении, когда х находится в пределах больше нуля и до бесконечности.
Свойство 3. Функция возрастает на промежутках от минус бесконечности до нуля и от нуля до плюс бесконечности: (-∞, 0) и (0, +∞).
Свойство 4. Функция является бесконечной, так как не имеет ограничений ни снизу, ни сверху.
Свойство 5. Ни наименьшего, ни наибольшего значений у функции нет, поскольку она бесконечна.
Свойство 6. Функция является непрерывной на промежутках от минус бесконечности до нуля (-∞, 0) и от нуля до бесконечности (0, +∞), при этом следует обозначить, что она претерпевает разрыв в том случае, когда х имеет значение ноль.
Свойство 7. Область значений функций является объединением двух открытых лучей от минус бесконечности до нуля (-∞, 0) и от нуля до плюс бесконечности (0, +∞).

Далее в видео приводятся примеры. Мы рассмотрим только некоторые из них, остальные рекомендуем посмотреть самостоятельно в предоставленных видеоматериалах.
Итак, рассмотрим первый пример. Необходимо решить уравнение следующего вида: 4/x = 5-x.
Для большего удобства разделим решение данного равенства на несколько этапов:
1) Для начала записываем наше равенство в виде двух отдельных уравнений: y = 4/x и y = 5-x/
2) Затем, как показано в видео, строим график функции y = 4/x, который является гиперболой.
3) Далее строим график линейной функции. В данном случае это прямая, которую можно построить по двум точкам. Графики представлены в нашем видеоматериале.
4) Уже по самому чертежу определяем точки, в которых пересекаются оба наших графика, и гипербола, и прямая. Следует обозначить, что они пересекаются в точках А (1; 4) и В (4; 1). Проверка полученных результатов показывает, что они верны. Данное уравнение может иметь два корня 1 и 4.

Следующий пример, рассмотренный в видеоуроке, имеет следующее задание: построить и прочитать график функции у = f(x), где f(x) = -x2, в случае если переменная x находится в пределах от больше или равно -2 и до больше или равно 1, и y = -1/x, в случае если x больше единицы.
Решение проводим в несколько этапов. Сначала строим график функции y = -x2, который называется «парабола», и выделяем ее часть на участке от - 2 до 1. Для просмотра графика обратитесь к видео.

Следующим этапом является построение гиперболы для равенства y = -1/x, и выделяем ее часть на открытом луче от единицы до бесконечности. Далее производим смещение обоих графиков в одной системе координат. В результате мы получаем график функции у = f(x).
Далее следует прочитать график функции у = f(x):
1. Область определения функции - это луч на участке от -2 до +∞.
2. у равняется нулю в том случае, когда х равняется нулю; у меньше нуля при значении x больше или равно -2 и меньше нуля, а также при x больше нуля.
3. Функция возрастает на участке от -2 до 0 и на участке от 1 и до бесконечности, график показывает убывание на отрезке от нуля до единицы.
4. Функция с заданными параметрами является ограниченной как снизу, так и сверху.
5. Наименьшее значение переменной y равняется - 4 и постигается при значении х на уровне - 2; и также наибольшим значением y является 0, который достигается при значении х равному нулю.
6. В заданной области определения наша функция является непрерывной.
7. Область значения функции располагается на отрезке от -4 до 0.
8. Функция выпукла вверх на отрезке от -2 до 1 и на луче от 1 до бесконечности.
С оставшимися примерами вы сможете ознакомиться самостоятельно, просмотрев представленное видео.

Понятие числовой функции. Способы задания функции. Свойства функций.

Числовая функция - функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество).

Три главных способа задания функции: аналитический, табличный и графический.

1. Аналитический.

Способ задания функции при помощи формулы называется аналитическим. Этот способ является основным в мат. анализе, но на практике не удобен.

2. Табличный способ задания функции.

Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

3. Графический способ задания функции.

Функция у=f(х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями.

Свойства функции, которые необходимо учитывать при построении её графика:

1)Область определения функции.

Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

2) Промежутки возрастания и убывания функции.

Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

3) Нули функции.

Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

4)Чётность и нечётность функции.

Функция называется чётной, если для всех значений аргумента из области определения



у(-х) = у(х).

График чётной функции симметричен относительно оси ординат.

Функция называется нечётной , если для всех значений аргумента из области определения

у(-х) = -у(х).

График чётной функции симметричен относительно начала координат.

Многие функции не являются ни чётными, ни нечётными.

5)Периодичность функции.

Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

у(х + Р) = у(х).


Линейная функция, её свойства и график.

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел.

k – угловой коэффициент (действительное число)

b – свободный член (действительное число)

x – независимая переменная.

· В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

· Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

o Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

o Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось.

Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

Замечание. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞),

y = kx + b – отрицательна при x из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k),

y = kx + b – отрицательна при x из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

11. Функция у = ах 2 + bх + с, её свойства и график.

Функция у = ах 2 + bх + с (а, b, с - постоянные величины, а ≠ 0) называется квадратичной. В простейшем случае у = ах 2 (b = с = 0) график есть кривая линия, проходящая через начало координат. Кривая, служащая графиком функции у = ах 2 , есть парабола. Каждая парабола имеет ось симметрии, называемую осью параболы. Точка О пересечения параболы с ее осью называется вершиной параболы .
График можно строить по следующей схеме: 1) Находим координаты вершины параболы х 0 = -b/2a; у 0 = у(х 0). 2) Строим еще несколько точек, которые принадлежат параболе, при построении можно использовать симметрии параболы относительно прямой х = -b/2a. 3) Соединяем обозначены точки плавной линией. Пример. Построить график функции в = х 2 + 2х - 3. Решения. Графиком функции является парабола, ветви которой направлены вверх. Абсцисса вершины параболы х 0 = 2/(2 ∙1) = -1, ее ординаты y(-1) = (1) 2 + 2(-1) - 3 = -4. Итак, вершина параболы - точка (-1; -4). Составим таблицу значений для нескольких точек, которые размещены справа от оси симметрии параболы - прямой х = -1.

Свойства функции.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).