» »

Синтез жиров в клетке осуществляется. Синтез триглицеридов из углеводов

03.03.2020
Органоиды Характеристики 1.Плазматическая мембрана 2. Ядро 3. Митохондрии 4. Пластиды 5. Рибосомы 6. ЭПС 7. Клеточный центр 8. Комплекс Гольджи 9.

Лизосомы А) Транспорт веществ по клетке, пространственное разделение реакций в клетке Б) Синтез белка В) Фотосинтез Г) Хранение наследственной информации Д) Немембранные Е) Синтез жиров и углеводов Ж) Содержит ДНК 3) Обеспечение клетки энергией И) Самопереваривание клетки и внутриклеточное пищеварение К) Связь клетки с внешней средой Л) Управление делением ядра М) Есть только у растений Н) Есть только у животных

Какие

особенности живой клетки зависят от функционирования биологических мембран

А.избирательная проницаемость

Б. ионный обмен

В. Поглощение и удерживание воды

Г. Изоляция от окружающей среды и
связь с ней

Какая
органелла связывает клетку в единое целое, осуществляет транспорт веществ,
участвует в синтезе жиров, белков, сложных углеводов:

Б.комплекс Гольджи

В.наружная клеточная мембрана

Какое
строение имеют рибосомы:

А. одномембранное

Б. двухмембранное

В. Немембранное

Как
называют внутренние структуры митохондрий:

А. граны

Б. матрикс

В. Кристы

Какие
структуры образованы внутренней мембраной хролопласта:

А. строма

Б.тилакоиды гран

В. Кристы

Г. Тилакоиды стромы

Для каких
организмов характерно ядро:

А. для эукариотов

Б. для прокариотов

Различаются
ли по химическому составу хромосомы и хроматин:

Где
расположена центромера на хромосоме:

А. на первичной перетяжке

Б. на вторичной перетяжке

Какие
органеллы характерны только для растительных клеток:

Б.митохондрии

В. Пластиды

Что
входит в состав рибосом:

Б.липиды

1 К двум мембранным органоидам клетки относится:

1)рибосома 2)митохондрия 3)эндоплазматическая сеть 4)лизосома
2 В митохондриях атомы водорода отдают электроны при этом энергия используется для синтеза:1)белков 2)жиров 3)углеводов 4)АТФ
3 Все органоиды клетки связаны между собой с помощью:1)клеточной стенки 2)эндоплазматической сети 3)цитоплазмы 4)вакуолей

Выберите один правильный ответ. 1. Наружная клеточная мембрана обеспечивает а) постоянную форму клетки в) обмен веществ и энергии в

б) осмотическое давление в клетке г) избирательную проницаемость

2. Оболочки из клетчатки, а также хлоропластов не имеют клетки

а) водорослей б) мхов в) папоротников г) животных

3. В клетке ядро и органоиды расположены в

а) цитоплазме _ в) эндоплазматической сети

б) комплексе Гольджи г) вакуолях

4. На мембранах гранулярной эндоплазматической сети происходит синтез

а) белков б) углеводов в) липидов г) нуклеиновых кислот

5. Крахмал накапливается в

а) хлоропластах б) ядре в) лейкопластах г) хромопластах

6. Белки, жиры и углеводы накапливаются в

а) ядре б) лизосомах в) комплексе Гольджи г) митохондриях

7. В образовании веретена деления участвуют

а) цитоплазма б) клеточный центр в) вакуоль г) комплекс Гольджи

8. Органоид, состоящий из множества связанных между собой полостей, в
которых накапливаются синтезированные в клетке органические вещества - это

а) комплекс Гольджи в) митохондрия

б) хлоропласт г) эндоплазматическая сеть

9. Обмен веществ между клеткой и окружающей ее средой происходит через
оболочку благодаря наличию в ней

а) молекул липидов в) молекул углеводов

б) многочисленных нор г) молекул нуклеиновых кислот

10.Синтезируемые в клетке органические вещества перемещаются к органоидам
а) с помощью комплекса Гольджи в) с помощью вакуолей

б) с помощью лизосом г) по каналам эндоплазматической сети

11.Расщепление органических веществ в клетке, сопровождаемое освобождением.
энергии и синтезом большого числа молекул АТФ происходит в

а) митохондриях б) лизосомах в) хлоропластах г) рибосомах

12. Организмы, клетки которых не имеют оформленного ядра, митохондрий,
комплекса Гольджи, относят к группе

а) прокариот б) эукариот в) автотрофов г) гетеротрофов

13. К прокариотам относятся

а) водоросли б) бактерии в) грибы г) вирусы

14. Ядро играет большую роль в клетке, так как оно участвует в синтезе

а) глюкозы б) липидов в) клетчатки г) нуклеиновых кислот и белков

15. Органоид, отграниченный от цитоплазмы одной мембраной, содержащий
множество ферментов, которые расщепляют сложные органические вещества
до простых мономеров, это

а) митохондрия б) рибосома в) комплекс Гольджи г) лизосома

Какие функции в клетке выполняет наружная плазматическая мембрана?

1)ограничивает содержимое клетки от внешней среды
2)обеспечивает передвижение веществ в клетке
3)обеспечивает связь между органоидами
4)осуществляет синтез молекул белка

Мембраны гладкой эндоплазматической сети выполняет функцию
1)синтез липидов и углеводов
2)синтез белков
3)расщепление белков
4)расщепление углеводов и липидов

Одна из функций комплекса гольджи
1)образование лизосом
2)образование рибосом
3)синтез Атф
4)окисление органических веществ

Молекулы липидов входят в состав
1)плазматической мембраны
2)рибосомы
3)оболочки клетки грибов
4)центриолей
Заранее спасибо кто поможет

Энергия образуется за счет окисления жиров и углеводов. Однако, их избыточное количество приводит к ожирению, а недостаток глюкозы к отравлению организма.

Для нормальной жизнедеятельности любого организма энергия должна быть в достаточных количествах. Главным ее источником является глюкоза. Однако не всегда углеводы полностью компенсируют энергетические потребности, поэтому важен синтез липидов – процесс, который обеспечивает энергией клетки, при малой концентрации сахаров.

Жиры и углеводы также являются каркасом для многих клеток и компонентами для процессов, обеспечивающих нормальное функционирование организма. Их источниками являются компоненты, поступающие с пищей. В виде гликогена запасается глюкоза, а ее избыточное количество превращается в жиры, которые содержатся в адипоцитах. При большом потреблении углеводов увеличение жирных кислот происходит за счет продуктов, которые ежедневно употребляются.

Процесс синтеза не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности. Не все 100% жиров, которые поступают с пищей, оказываются в кровотоке. Из них 2% выводится кишечником неизмененными. Это связано как с самой пищей, так и с процессом всасывания.

Жиры, поступающие с едой, не могут использоваться организмом без дополнительного расщепления до спирта (глицерина) и кислот. Эмульгирование происходит в 12-перстной кишке с обязательным участием ферментов самой стенки кишечника и желез внутренней секреции. Не менее важной является желчь, которая активирует фосфолипазы. Уже после расщепления спирт, жирные кислоты поступают в кровь. Биохимия процессов не может быть простой, так как зависит от множества факторов.

Жирные кислоты

Все они делятся на:

  • короткие (количество атомов углерода не превышает 10);
  • длинные (углерода больше 10).

Коротким не нужны дополнительные соединения и вещества, чтобы попасть в кровоток. В то время как длинные жирные кислоты обязательно должны создать комплекс с желчными кислотами.

Короткие жирные кислоты и их способность быстро всасываться без дополнительных соединений важна для младенцев, чей кишечник еще не работает как у взрослых. Кроме того, само грудное молоко содержит только короткие цепочки.

Полученные соединения жирных кислот с желчными называются мицеллами. Они имеют гидрофобную сердцевину, не растворимую в воде и состоящую из жиров, и гидрофильную оболочку (растворимую за счет желчных кислот). Именно желчные кислоты позволяют липидам транспортироваться в адипоциты.

Мицелла распадается на поверхности энтероцитов и кровь насыщается чистыми жирными кислотами, которые вскоре оказываются в печени. В энтероцитах образуется хиломикроны и липопротеиды. Эти вещества – соединения жирных кислот, белка и именно они доставляют любой клетке полезные вещества.

Желчные кислоты не выделяются кишечником. Малая часть проходит через энтероциты и попадает в кровь, а большая часть перемещается до конца тонкой кишки и всасывается посредством активного транспорта.

Состав хиломикрон:

  • триглицериды;
  • эфиры холестерина;
  • фосфолипиды;
  • свободный холестерин;
  • белок.

Хиломикроны, которые образуется внутри клеток кишечника, еще молодые, большие по размеру, поэтому не могут оказаться в крови самостоятельно. Они транспортируются в лимфатическую систему и только после прохождения главного протока попадают в кровь. Там они взаимодействуют с липопротеидами высокой плотности и образуют белки апо-С и апо-Е.

Только после этих превращений хиломикроны можно называть зрелыми, так как именно они используются на нужды организма. Основная задача – это транспортировка липидов к тканям, которые запасают их или используют. К ним можно отнести жировую ткань, легкие, сердце, почки.

Хиломикроны появляются после еды, поэтому и процесс синтеза и транспортировки жира активируется только после приема пищи. Некоторые ткани не могут в чистом виде поглощать эти комплексы, поэтому часть связывается с альбумином и только после этого потребляется тканью. Примером может служить скелетная ткань.

Фермент липопротеинлипаза снижает триглицериды у хиломикрон, отчего уменьшаются, становятся остаточными. Именно они полностью попадают в гепатоциты и там заканчивается процесс их расщепления до составляющих компонентов.

Биохимия синтеза эндогенного жира происходит с использованием инсулина. Его количество зависит от концентрации углеводов в крови, поэтому для того, чтобы жирные кислоты поступили в клетку, необходим сахар.

Ресинтез липидов

Ресинтез липидов – процесс, благодаря которому происходит синтезирование липидов в стенке, клетке кишечника из жиров, которые поступают в организм с пищей. В качестве дополнения могут быть задействованы и жиры, которые продуцируются внутри.

Этот процесс является одним из важных, так как позволяет связывать длинные жирные кислоты и препятствовать их разрушающему действию на мембраны. Чаще всего эндогенные жирные кислоты связываются со спиртом, таким как глицерол или холистерол.

Процесс ресинтеза не заканчивается на связывании. Далее происходит упаковка в формы, которые способны покинуть энтероцит, так называемые транспортные. Именно в самом кишечнике происходит образование двух видов липопротеинов. К ним относятся хиломикроны, которые непостоянно находятся в крови и их появление зависит от приема пищи, и липопротеины высокой плотности, что являются постоянными формами, и их концентрация не должна превышать 2 г/л.

Использование жиров

К сожалению, использование триглицеридов (жиров) для энергообеспечения организма считается очень трудоемким, поэтому этот процесс считается резервным, даже несмотря на то, что он намного эффективнее, чем получение энергии из углеводов.

Липиды для энергетического обеспечения организма используются только, если отмечается недостаточное количество глюкозы. Такое происходит при долгом отсутствии потребления пищи, после активной нагрузки или после длительного ночного сна. После окисления жиров получается энергия.

Но так как организм не нуждается во всей энергии, то ей приходится аккумулироваться. Она скапливается в виде АТФ. Именно эта молекула используется клетками для многих реакций, что протекают только с затратой энергии. Преимущество АТФ в том, что она подходит для всех клеточных структур организма. Если глюкоза содержится в достаточном объеме, то 70% энергии покрывается окислительными процессами глюкозы и только оставшиеся проценты окислением жирных кислот. При снижении аккумулированного углевода в организме преимущество переходит к окислению жиров.

Чтобы количество поступающих веществ не было больше, чем выход, для этого нужны потребляемые жиры и углеводы в пределах нормы. В среднем человеку требуется 100 г жиров в день. Это обоснованно тем, что только 300 мг сможет всосаться из кишечника в кровь. Большее количество будет выведено практически неизменно.

Важно помнить, что при недостатке глюкозы окисление липидов невозможно. Это приведет к тому, что в избыточном количестве в клетке будут накапливаться продукты окисления – ацетон и его производные. Превышение нормы постепенно отравляет организм, пагубно влияет на нервную систему и при отсутствии помощи может привести к летальному исходу.

Биосинтез жиров – неотъемлемый процесс функционирования организма. Он является запасным источником получения энергии, который в отсутствии глюкозы поддерживает все биохимические процессы на должном уровне. Транспортировка жирных кислот к клеткам осуществляется хиломикронами и липопротеидами. Особенностью является то, что хиломикроны появляются только после приема пищи, а липопротеиды присутствуют в крови постоянно.

Биосинтез липидов – процесс, который зависит от множества дополнительных процессов. Присутствие глюкозы должно быть обязательным, так как накопление ацетона из-за неполного окисления липидов может привести к постепенному отравлению организма.

Реакции биосинтеза липидов могут идти в гладкой эндоплазматической сети клеток всех органов. Субстратом для синтеза жиров de novo является глюкоза .

Как известно, попадая в клетку, глюкоза превращается в гликоген, пентозы и окисляется до пировиноградной кислоты. При высоком поступлении глюкоза используется для синтеза гликогена, но этот вариант ограничивается объемом клетки. Поэтому глюкоза "проваливается" в гликолиз и превращается в пируват либо напрямую, либо через пентозофосфатный шунт. Во втором случае образуется НАДФН, который понадобится впоследствии для синтеза жирных кислот.

Пируват переходит в митохондрии, декарбоксилируется в ацетил-SКоА и вступает в ЦТК . Однако в состоянии покоя , при отдыхе , при наличии избыточного количества энергии в клетке реакции ЦТК (в частности, изоцитратдегидрогеназная реакция) блокируются избытком АТФ и НАДН .

Общая схема биосинтеза триацилглицеролов и холестерола из глюкозы

Оксалоацетат, также образуемый из цитрата, восстанавливается малатдегидрогеназой до яблочной кислоты и возвращается в митохондрии

  • посредством малат-аспартатного челночного механизма (на рисунке не показан),
  • после декарбоксилирования малата до пирувата НАДФ-зависимым малик-ферментом . Образованный НАДФН будет использован при синтезе жирных кислот или холестерина.

3.3. Синтез жиров

Синтезируются жиры из глицерина и жирных кислот. Глицерин в организме возникает при распаде жира (пищевого или собственного), а также легко образуется из углеводов. Жирные кислоты синтезируются из ацетилкофермента А - универсального метаболита организма. Для этого синтеза еще необходимы водород (в форме НАДФН 2) и энергия АТФ. В организме синтезируются только насыщенные и мононенасыщенные (имеющие одну двойную связь) жирные кислоты. Кислоты, содержащие две и более двойных связей в своей молекуле (полиненасыщенные), в организме не синтезируются и должны поступать с пищей. Для синтеза жира также могут быть использованы жирные кислоты - продукты гидролиза пищевого и собственного жиров.

Все участники синтеза жира должны быть в активном виде: глицерин в форме глицерофосфата, а жирные кислоты в форме ацилко-фермента А. Синтез жира осуществляется в цитоплазме клеток (преимущественно жировой ткани, печени, тонкой кишки) и протекает по следующей схеме

Следует подчеркнуть, что глицерин и жирные кислоты могут быть получены углеводов. Поэтому при избыточном потреблении углеводов на фоне малоподвижного образа жизни развивается ожирение.

Лекция 4. Обмен белков

4.1. Катаболизм белков

Белки, входящие в состав клеток организма, также подвергаются постоянному распаду под влиянием внутриклеточных протеолитических ферментов, называемых внутриклеточными протеиназами или катепсинами. Эти ферменты локализованы в специальных внутриклеточных органоидах – лизосомах. Под действием катепсинов белки организма также превращаются в аминокислоты. (Важно отметить, что распад как пищевых, так и собственных белков организма приводит к образованию одних и тех же 20 видов аминокислот.) В сутки расщепляется примерно 200 г белков организма. Поэтому в течение суток в организме появляется около 300 г свободных аминокислот.

4.2. Синтез белков

Большая часть аминокислот используется для синтеза белков. Синтез белков происходит при обязательном участии нуклеиновых кислот.

Первый этап синтеза белка - транскрипция - осуществляется в клеточном ядре с использованием ДНК как источника генетической информации. Генетическая информация обусловливает порядок расположения аминокислот в полипептидных цепях синтезируемого белка. Эта информация закодирована последовательностью азотистых оснований в молекуле ДНК. Каждая аминокислота кодируется сочетанием трех азотистых оснований, называемым кодоном , или триплетом . Участок молекулы ДНК, содержащий информацию об определенном белке, получил название «ген». На этом участке ДНК во время транскрипции по принципу комплементарности синтезируется информационная РНК (иРНК). Эта нуклеиновая кислота представляет собой копию соответствующего гена. Образовавшаяся иРНК выходит из ядра и поступает в цитоплазму. Аналогичным образом на ДНК как на матрице происходит синтез рибосомных (рРНК) и транспортных (тРНК).

В ходе второго этапа – рекогниции (распознавания), протекающего в цитоплазме, аминокислоты избирательно связываются со своими переносчиками - транспортными РНК(тРНК). Молекула каждой тРНК представляет собой короткую полинуклеотидную цепь, содержащую примерно 80 нуклеотидов и частично закрученную в двойную спираль, что приводит к возникновению конфигурации «изогнутого клеверного листа». На одном конце полинуклеотидной цепи у всех тРНК находится нуклеотид, содержащий аденин. К этому концу молекулы тРНК присоединяется аминокислота. Петля, противоположная месту присоединения аминокислоты, содержит антикодон, состоящий из трех азотистых оснований и предназначенный для последующего связывания с комплементарным кодоном иРНК. Одна из боковых петель молекулы тРНК обеспечивает присоединение тРНК к ферменту, участвующему в рекогниции , а другая, боковая, петля необходима для присоединения тРНК к рибосоме на следующем этапе синтеза белка.

На этом этапе в качестве источника энергии используется молекула АТФ. В результате рекогниции образуется комплекс аминокислота-тРНК. В связи с этим второй этап синтеза белка называют активацией аминокислот.

Третий этап синтеза белка - трансляция - происходит на рибосомах. Каждая рибосома состоит из двух частей - большой и малой субчастиц. По химическому составу обе субчастицы состоят из рРНК и белков. Рибосомы способны легко распадаться на субчастицы, которые снова могут соединяться друг с другом, образуя рибосому. Трансляция начинается с диссоциации рибосомы на субчастицы, которые сразу же присоединяются к начальной части молекулы иРНК, поступающей из ядра. При этом между субчастицами остается пространство (так называемый туннель), где располагается небольшой участок иРНК. Затем к образовавшемуся комплексу рибосома - иРНК присоединяются тРНК, связанные с аминокислотами. Присоединение тРНК к этому комплексу происходит путем связывания одной из боковых петлей тРНК с рибосомой и связывания антикодона тРНК с комплементарным ему кодоном иРНК, находящимся в туннеле между субчастицами рибосомы. Одновременно к комплексу рибосома - иРНК могут присоединиться только две тРНК с аминокислотами.

Благодаря специфическому связыванию антикодонов тРНК с кодонами иРНК, к участку молекулы иРНК, находящемуся в туннеле, присоединяются только молекулы тех тРНК, у которых антикодоны комплементарны кодонам иРНК. Поэтому эти тРНК доставляют в рибосомы только строго определенные аминокислоты. Далее аминокислоты соединяются друг с другом пептидной связью и образуется дипептид, который связан с одной из тРНК. После этого рибосома передвигается вдоль иРНК ровно на один кодон (это перемещение рибосомы называется траислокацией ).

В результате транслокации свободная (без аминокислоты) тРНК отщепляется от рибосомы, а в зоне туннеля появляется новый кодон, к которому присоединяется по принципу комплементарности еще одна тРНК с аминокислотой, соответствующей этому кодону. Доставленная аминокислота соединяется с ранее образовавшимся дипептидом, что приводит к удлинению пептидной цепи. Далее следуют новые транслокации, поступление на рибосому новых тРНК с аминокислотами и дальнейшее удлинение пептидной цепи.

Таким образом порядок включения аминокислот в синтезируемый белок определяется последовательностью кодонов в иРНК. Завершается синтез полипептидной цепи при поступлении в туннель особого кодона, который не кодирует аминокислоты и к которому не может присоединиться ни одна тРНК. Такие кодоны называются терминирующими.

В итоге за счет описанных трех этапов синтезируются полипептиды, т. е. формируется первичная структура белка. Высшие (пространственные) структуры (вторичная, третичная, четвертичная) возникают самопроизвольно.

Синтез белков - процесс энергоемкий. Для включения в молекулу синтезируемого белка только одной аминокислоты требуется не менее трех молекул АТФ.

4.3. Метаболизм аминокислот

Помимо синтеза белков аминокислоты еще используются для синтеза различных небелковых соединений, имеющих важное биологическое значение. Часть аминокислот подвергается распаду и превращается в конечные продукты: С0 2 , Н 2 0 и NН 3 Распад начинается с реакций, общих для большинства аминокислот.

К ним относятся:

а) декарбоксилирование - отщепление от аминокислот карбоксильной группы в виде углекислого газа:

Трансаминированию подвергаются все аминокислоты. В этой реакции участвует кофермент - фосфопиридоксаль, для образования которого необходим витамин В 6 - пиридоксин.

Трансаминирование - это главное превращение аминокислот в организме, так как его скорость значительно выше, чем у реакций декар-боксилирования и дезаминирования.

Трансаминирование выполняет две основные функции:

а) за счет трансаминирования одни аминокислоты могут превращаться в другие. При этом общее количество аминокислот не меняется, но изменяется соотношение между ними. С пищей в организм посту пают чужеродные белки, у которых аминокислоты находятся в иных пропорциях по сравнению с белками организма. Путем трансаминирования происходит корректировка аминокислотного состава организма.

б) является составной частью косвенного (непрямого) дезаминирования аминокислот - процесса, с которого начинается распад большинства аминокислот.

На первой стадии этого процесса аминокислоты вступают в реакцию трансаминирования с α-кетоглутаровой кислотой. Аминокислоты при этом превращаются в α-кетокислоты, а α-кетоглутаровая кислота переходит в глутаминовую кислоту (аминокислота).

На второй стадии появившаяся глутаминовая кислота подвергается дезаминированию, от нее отщепляется NН 3 и снова образуется α-кетоглутаровая кислота. Образовавшиеся α-кетокислоты далее подвергаются глубокому распаду и превращаются в конечные продукты С0 2 и Н 2 0. Для каждой из 20 кетокислоr (их образуется столько же, сколько имеется видов аминокислот) имеются свои специфические пути распада. Однако при распаде некоторых аминокислот в качестве промежуточного продукта образуется пировиноградная кислота, из которой возможен синтез глюкозы. Поэтому аминокислоты, из которых возникают такие кетокислоты, получили название глюкогенные. Другие же кетокислоты при своем распаде не образуют пирувата. Промежуточным продуктом у них является ацетилкофермент А, из которого невозможно получить глюкозу, но зато могут синтезироваться кетоновые тела. Аминокислоты, соответствующие таким кетокислотам, называются кетогенные.

Второй продукт косвенного дезаминирования аминокислот - аммиак. Для организма аммиак является высокотоксичным. Поэтому в организме имеются молекулярные механизмы его обезвреживания. По мере образования NН 3 связывается во всех тканях с глутаминовой кислотой с образованием глутамина. Это временное обезвреживание аммиака. С током крови глутамин поступает в печень, где распадается опять на глутаминовую кислоту и NНз. Образовавшаяся глутаминовая кислота с кровью снова поступает в органы для обезвреживания новых порций аммиака. Освободившийся аммиак, а также углекислый газ в печени используются для синтеза мочевины.

Синтез мочевины - циклический, многостадийный процесс, потребляющий большое количество энергии. В синтезе мочевины очень важное участие принимает аминокислота орнитин. Эта аминокислота не входит в состав белков. Образуется орнитин из другой аминокислоты - аргинина, который присутствует в белках. В связи с важной ролью орнитина синтез мочевины получил название орнитиновый цикл.

Впроцессе синтеза к орнитину присоединяются две молекулы аммиака и молекула углекислого газа, и орнитин превращается в аргинин, от которого сразу же отщепляется мочевина, и вновь образуется орнитин. Наряду с орнитином и аргинином в образовании мочевины еще участвуют аминокислоты: глутамин и аспарагиновая кислота. Глутамин является поставщиком аммиака, а аспарагиновая кислота его переносчиком.

Синтез мочевины - это окончательное обезвреживание аммиака. Из печени с кровью мочевина поступает в почки и выделяется с мочой. В сутки образуется 20-35 г мочевины. Выделение мочевины с мочой характеризует скорость распада белков в организме.

Раздел 3. Биохимия мышечной ткани

Лекция 5. Биохимия мышц

5.1. Клеточное строение мышечного волокна

У животных и человека имеются два основных типа мышц: поперечно-полосатые и гладкие. Поперечно-полосатые мышцы прикрепляются к костям, т. е. к скелету, и поэтому еще называются скелетными. Поперечно-полосатые мышечные волокна составляют также основу сердечной мышцы – миокарда, хотя имеются определенные различия в строении миокарда и скелетных мышц. Гладкие мышцы образуют мускулатуру стенок кровеносных сосудов, кишечника, пронизывают ткани внутренних органов и кожу.

Каждая поперечно-полосатая мышца состоит из нескольких тысяч волокон, объединенных соединительнотканными прослойками и такой же оболочкой - фасцией. Мышечные волокна (миоциты) представляют собою сильно вытянутые многоядерные клетки крупного размера длиной до 2-3 см, а в некоторых мышцах даже более 10 см. Толщина мышечных клеток около 0,1-0,2 мм.

Как и любая клетка, миоцит содержит такие обязательные органоиды, как ядра, митохондрии, рибосомы, цитоплазматическую сеть и клеточную оболочку. Особенностью миоцитов, отличающих их от других клеток, является наличие сократительных элементов - миофибрилл.

Ядра окружены оболочкой - нуклеолеммой и состоят в основном из нуклеопротеидов. В ядре содержится генетическая информация для синтеза белков.

Рибосомы - внутриклеточные образования, являющиеся по химическому составу нуклеопротеидами. На рибосомах происходит синтез белков.

Митохондрии - микроскопические пузырьки размером до 2-3 мкм, окруженные двойной мембраной. В митохондриях протекает окисление углеводов, жиров и аминокислот до углекислого газа и воды с использованием молекулярного кислорода (кислорода воздуха). За счет энергии, выделяющейся при окислении, в митохондриях осуществляется синтез АТФ. В тренированных мышцах митохондрии многочисленны и располагаются вдоль миофибрилл.

Цитоплазматическая сеть (саркоплазматическая сеть, саркоплаз-матический ретикулум) состоит из трубочек, канальцев и пузырьков, образованных мембранами и соединенных друг с другом. Саркоплазматическая сеть с помощью особых трубочек, называемых Т-системой, связана с оболочкой мышечной клетки - сарколеммой. Особо следует выделить в саркоплазматической сети пузырьки, называемые цистер нами и содержащие в большой концентрации ионы кальция. В цистернах содержание ионов Са 2+ примерно в тысячу раз выше, чем в цитозоле. Такой высокий градиент концентрации ионов кальция возникает вследствие функционирования фермента - кальциевой аденозинтри-фосфатазы (кальциевая АТФаза), встроенного в стенку цистерны. Этот фермент катализирует гидролиз АТФ и за счет выделяющейся при этом энергии обеспечивает перенос ионов кальция вовнутрь цистерн. Такой Механизм транспорта ионов кальция образно называется кальциевым насосом, или кальциевой помпой.

Цитоплазма (цитозоль, саркоплазма) занимает внутреннее пространство миоцитов и представляет собой коллоидный раствор, содержащий белки, гликоген, жировые капли и другие включения. На долю белков саркоплазмы приходится 25-30% от всех белков мышц. Среди саркоплазматических белков имеются активные ферменты. К ним в первую очередь следует отнести ферменты гликолиза, расщепляющие гликоген или глюкозу до пировиноградной или молочной кислоты. Еще один важный фермент саркоплазмы - креатинкиназа , участвующий в энергообеспечении мышечной работы. Особого внимания заслуживает белок саркоплазмы миоглобин, который по строению идентичен одной из субъединиц белка крови – гемоглобина. Состоит миоглобин из одного полипептида и одного гема. Функция миоглобина заключается в связывании молекулярного кислорода. Благодаря этому белку в мышечной ткани создается определенный запас кислорода. В последние годы установлена еще одна функция миоглобина - это перенос 0 2 от сарколеммы к мышечным митохондриям.

Кроме белков в саркоплазме имеются небелковые азотсодержащие вещества. Их называют, в отличие от белков, экстрактивными веществами, так как они легко экстрагируются водой. Среди них - адениловые нуклеотиды АТФ, АДФ, АМФ и другие нуклеотиды, причем преобладает АТФ. Концентрация АТФ в покое примерно 4-5 ммоль/кг. К экстрактивным веществам также относятся креатинфосфат, его предшественник - креатин и продукт необратимого распада креатинфосфата - креатинин. В покое концентрация креатинфосфата обычно 15-25 ммоль/кг. Из аминокислот в большом количестве имеются глутаминовая кислота и глутамин.

Основной углевод мышечной ткани - гликоген. Концентрация гликогена колеблется в пределах 0,2-3%. Свободная глюкоза в саркоплазме содержится в очень малой концентрации - имеются лишь ее следы. В процессе мышечной работы в саркоплазме происходит накопление продуктов углеводного обмена - лактата и пирувата.

Протоплазматический жир связан с белками и имеется в концентрации 1%. Запасной жир накапливается в мышцах, тренируемых на выносливость.

5.2. Структура сарколеммы

Каждое мышечное волокно окружено клеточной оболочкой - сарколеммой. Сарколемма представляет собою лилопротеидную мембрану толщиной около 10 нм. Снаружи сарколемма окружена сетью из переплетенных нитей белка коллагена. При мышечном сокращении в коллагеновой оболочке возникают упругие силы, за счет которых при расслаблении мышечное волокно растягивается и возвращается в исходное состояние. К сарколемме подходят окончания двигательных нервов. Место контакта нервного окончания с сарколеммой называется нервно-мышечный синапс, или концевая нервная пластинка.

Сократительные элементы - миофибриллы - занимают большую часть объема мышечных клеток, их диаметр около 1 мкм. В нетренированных мышцах миофибриллы расположены рассеянно, а в тренированных они сгруппированы в пучки, называемые полями Конгейма.

5.3. Строение анизотропных и изотропных дисков

Микроскопическое изучение строения миофибрилл показало, что они состоят из чередующихся светлых и темных участков, или дисков. В мышечных клетках миофибриллы располагаются таким образом, что светлые и темные участки рядом расположенных миофибрилл совпадают, что создает видимую под микроскопом поперечную исчерченность всего мышечного волокна. Было обнаружено, что миофибриллы являются сложными структурами, построенными, в свою очередь, из большого числа мышечных нитей (протофибрилл, или филаментов) двух типов - толстых и тонких. Толстые нити имеют диаметр 15 нм, тонкие - 7 нм.

Состоят же миофибриллы из чередующихся пучков параллельно расположенных толстых и тонких нитей, которые концами заходят друг в друга. Участок миофибриллы, состоящий из толстых нитей и находящихся между ними концов тонких нитей, обладает двойным лучепреломлением. При микроскопии этот участок задерживает видимый свет или поток электронов (при использовании электронного микроскопа) и поэтому кажется темным. Такие участки получили название анизотропные, или темные, диски (А-диски).

Светлые участки миофибрилл состоят из центральных частей тонких нитей. Они сравнительно легко пропускают лучи света или поток электронов, так как не обладают двойным лучепреломлением и называются изотропными, или светлыми, дисками (I -диски). В середине пучка тонких нитей поперечно располагается тонкая пластинка из белка, которая фиксирует положение мышечных нитей в пространстве. Эта пластинка хорошо видна под микроскопом в виде линии, идущей поперек I-диска, и названа Z -пластинкой.

Участок миофибриллы между соседними 2-линиями получил название саркомер. Его длина 2,5-3 мкм. Каждая миофибрилла состоит из нескольких сотен саркомеров (до 1000).

5.4. Строение и свойства сократительных белков

Изучение химического состава миофибрилл показало, что толстые и тонкие нити состоят только из белков.

Толстые нити состоят из белка миозина. Миозин - белок с молекулярной массой около 500 кДа, содержащий две очень длинные полипептидные цепи. Эти цепи образуют двойную спираль, но на одном конце эти нити расходятся и формируют шаровидное образование - глобулярную головку. Поэтому в молекуле миозина различают две части - глобулярную головку и хвост. В состав толстой нити входит около 300 миозиновых молекул, а на поперечном срезе толстой нити обнаруживается 18 молекул миозина. Миозиновые молекулы в толстых нитях переплетаются своими хвостами, а их головки выступают из толстой нити по правильной спирали. В головках миозина имеются два важных участка (центра). Один из них катализирует гидролитическое расщепление АТФ, т. е. соответствует активному центру фермента. АТФазная активность миозина впервые обнаружена отечественными биохимиками Энгельгардтом и Любимовой. Второй участок головки миозина обеспечивает во время мышечного сокращения связь толстых нитей с белком тонких нитей - ак тином.

Тонкие нити состоят из трех белков: актина, тропонина и тропо миозина.

Основной белок тонких нитей - актин. Актин - глобулярный белок с молекулярной массой 42 кДа. Этот белок обладает двумя важнейшими свойствами. Во-первых, проявляет высокую способность к полимеризации с образованием длинных цепей, называемых фибриллярным актином (можно сравнить с нитью бус). Во-вторых, как уже отмечалось, актин может соединяться с миозиновыми головками, что приводит к образованию между тонкими и толстыми нитями поперечных мостиков, или спаек.

Основой тонкой нити является двойная спираль из двух цепей фибриллярного актина, содержащая около 300 молекул глобулярного актина (как бы две нити бус, закрученные в двойную спираль, каждая бусинка соответствует глобулярному актину).

Еще один белок тонких нитей – тропомиозин – также имеет форму двойной спирали, но эта спираль образована полипептидными цепями и по размеру гораздо меньше двойной спирали актина. Тропомиозин располагается в желобке двойной спирали фибриллярного актина.

Третий белок тонких нитей – тропонин - присоединяется к тропомиозину и фиксирует его положение в желобке актина, при котором блокируется взаимодействие миозиновых головок с молекулами глобулярного актина тонких нитей.

5.5. Механизм мышечного сокращения

Мышечное сокращение является сложным механохимическим процессом, в ходе которого происходит преобразование химической энергии гидролитического расщепления АТФ в механическую работу, совершаемую мышцей.

В настоящее время этот механизм еще полностью не раскрыт. Но достоверно известно следующее:

    Источником энергии, необходимой для мышечной работы является АТФ.

    Гидролиз АТФ, сопровождающийся выделением энергии, катализируется миозином, который, как уже отмечалось, обладает ферментативной активностью.

    Пусковым механизмом мышечного сокращения является повышение концентрации ионов Са в саркоплазме миоцитов, вызываемое двигательным нервным импульсом.

    Во время мышечного сокращения между толстыми и тонкими нитями миофибрилл возникают поперечные мостики, или спайки.

    Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Имеется много гипотез, пытающихся объяснить молекулярный механизм мышечного сокращения. Наиболее обоснованной в настоящее время является гипотеза «весельной лодки », или «гребная» гипотеза X. Хаксли. В упрощенном виде ее суть заключается в следующем.

В мышце, находящейся в состоянии покоя, толстые и тонкие нити миофибрилл друг с другом не соединены, так как участки связывания на молекулах актина закрыты молекулами тропомиозина.

Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну.

Эта волна повышенной проницаемости передается через нервно-мышечный синапс на Т-систему саркоплазматической сети и в конечном счете достигает цистерн, содержащих ионы кальция в большой концентрации. В результате значительного повышения проницаемости стенки цистерн ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей - тропонину - и меняют его пространственную форму (конформацию). Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т. е. между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90°. Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую), то между мышечными нитями образуется довольно большое количество поперечных мостиков, или спаек. Образование связи между актином и миозином сопровождается повышением АТФазной активности последнего, в результате чего происходит гидролиз АТФ:

АТФ + Н 2 0 АДФ + Н 3 Р0 4 + энергия

За счет энергии, выделяющейся при расщеплении АТФ, миозиновая головка, подобно шарниру или веслу лодки, поворачивается и мостик между толстыми и тонкими нитями оказывается под углом 45°, что приводит к скольжению мышечных нитей навстречу друг другу. Совершив поворот, мостики между толстыми и тонкими нитями разрываются. АТФазная активность миозина вследствие этого резко снижается, и гидролиз АТФ прекращается. Но если двигательный нервный импульс продолжает поступать в мышцу и в саркоплазме сохраняется высокая концентрация ионов кальция, поперечные мостики вновь образуются, АТФазная активность миозина возрастает и снова происходит гидролиз новых порций АТФ, дающий энергию для поворота поперечных мостиков с последующим их разрывом. Это ведет к дальнейшему движению толстых и тонких нитей навстречу друг другу и укорочению миофибрилл и мышечного волокна.

Учебно -методический комплекс по дисциплине по по биохимии . 2. Следующим...

  • Учебно-методический комплекс по дисциплине (83)

    Учебно-методический комплекс

    Кафедры) Ф.и.о. автора_____Родина Елена Юрьевна________________________________ Учебно -методический комплекс по дисциплине МОЛЕКУЛЯРНАЯ БИОЛОГИЯ (название) Специальность... с учебниками по молекулярной биологии указаны учебники по биохимии . 2. Следующим...

  • В организме человека исходным сырьем для биосинтеза жиров могут служить углеводы, поступающие с пищей, в растениях – сахароза, поступающая из фотосинтезирующих тканей. Например, биосинтез жиров (триацилглицеролов) в созревающих семенах масличных растений также тесно связан с обменом углеводов. На ранних стадиях созревания клетки основных тканей семян – семядолей и эндосперма заполнены крахмальными зернами. Только потом, на более поздних стадиях созревания крахмальные зерна замещаются липидами, основным компонентом которых является триацилглицерол.

    Основные этапы синтеза жира включают образование из углеводов глицерол-3-фосфата и жирных кислот, а затем сложноэфирных связей между спиртовыми группами глицерола и карбоксильными группами жирных кислот:

    Рисунок 11– Общая схема синтеза жира из углеводов

    Рассмотрим более подробно основные этапы синтеза жира из углеводов (см. рис. 12).

          1. Синтез глицерол-3-фосфата

    Iэтап – при действии соответствующих гликозидаз углеводы подвергаются гидролизу с образованием моносахаридов (см. п.1.1.), которые в цитоплазме клеток включаются в процесс гликолиза (см. рис. 2). Промежуточными продуктами гликолиза являются фосфодиоксиацетон и 3-фосфоглицериновый альдегид.

    IIэтап. Глицерол-3-фосфат образуется в результате восстановления фосфодиоксиацетона – промежуточного продукта гликолиза:

    Кроме того, глицеро-3-фосфат может образоваться в ходе темновой фазы фотосинтеза.

      1. Взаимосвязь липидов и углеводов

        1. Синтез жиров из углеводов

    Рисунок 12 – Схема превращения углеводов в липиды

          1. Синтез жирных кислот

    Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который образуется двумя путями: либо в результате окислительного декарбоксилирования пирувата. (см. рис. 12, Этап III), либо в результате-окисления жирных кислот (см. рис. 5). Напомним, что превращения образовавшегося при гликолизе пирувата в ацетил-КоА и его образование при-окислении жирных кислот происходит в митохондриях. Синтез жирных кислот протекает в цитоплазме. Внутренняя мембрана митохондрий непроницаема для ацетил-КоА. Его поступление в цитоплазму осуществляется по типу облегченной диффузии в виде цитрата или ацетилкарнитина, которые в цитоплазме превращаются в ацетил-КоА, оксалоацетат или карнитин. Однако главный путь переноса ацетил-коА из митохондрии в цитозоль является цитратный (см. рис. 13).

    Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.

    В цитозоле цитрат реагирует с HS-КоА и АТФ, вновь распадается на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитратлиазой. Уже в цитозоле оксалоацетат при участии цитозольной дикарбоксилаттранспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата, завершая тем самым так называемый челночный цикл:

    Рисунок 13 – Схема переноса ацетил-КоА из митохондрий в цитозоль

    Биосинтез насыщенных жирных кислот происходит в направлении, противоположном их -окислению, наращивание углеводородных цепей жирных кислот осуществляется за счет последовательного присоединения к их концам двухуглеродного фрагмента (С 2) – ацетил-КоА (см. рис. 12, этапIV.).

    Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется СО 2 , АТФ, ионыMn. Катализирует эту реакцию фермент ацетил-КоА – карбоксилаза. Фермент содержит в качестве простетической группы биотин (витамин Н). Реакция протекает в два этапа: 1 – карбоксилирование биотина с участием АТФ иII– перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

    Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментной системы малонил-КоА быстро превращается в жирные кислоты.

    Нужно отметить, что скорость биосинтеза жирных кислот определяется содержанием сахаров в клетке. Увеличение концентрации глюкозы в жировой ткани человека, животных и повышение скорости гликолиза стимулирует процесс синтеза жирных кислот. Это свидетельствует о том, что жировой и углеводный обмен тесно взаимосвязаны друг с другом. Важную роль здесь играет именно реакция карбоксилирования ацетил-КоА с его превращением в малонил-КоА, катализируемая ацетил-КоА-карбоксилазой. Активность последней зависит от двух факторов: наличия в цитоплазме высокомолекулярных жирных кислот и цитрата.

    Накопление жирных кислот оказывает тормозящее влияние на их биосинтез, т.е. подавляют активность карбоксилазы.

    Особая роль отводится цитрату, который является активатором ацетил-КоА-карбоксилазы. Цитрат в то же время играет роль связующего звена углеводного и жирового обменов. В цитоплазме цитрат вызывает двойной эффект в стимулировании синтеза жирных кислот: во-первых, как активатор ацетил-КоА-карбоксилазы и, во-вторых, как источник ацетильных групп.

    Очень важной особенностью синтеза жирных кислот является то, что все промежуточные продукты синтеза ковалентно связаны с ацилпереносящим белком (HS-АПБ).

    HS-АПБ – низкомолекулярный белок, который термостабилен, содержит активнуюHS-группу и в простетической группе которого содержится пантотеновая кислота (витамин В 3). ФункцияHS-АПБ аналогична функции фермента А (HS-КоА) при-окислении жирных кислот.

    В процессе построения цепи жирных кислот промежуточные продукты образуют эфирные связи с АБП (см. рис. 14):

    Цикл удлинения цепи жирных кислот включает четыре реакции: 1) конденсации ацетил-АПБ (С 2) с малонил-АПБ (С 3); 2) восстановления; 3) дегидротации и 4) второго восстановления жирных кислот. На рис. 14 представлена схема синтеза жирных кислот. Один цикл удлинения цепи жирной кислоты включает четыре последовательных реакции.

    Рисунок 14 – Схема синтеза жирных кислот

    В первой реакции (1) – реакции конденсации – ацетильная и малонильные группы взаимодействуют между собой с образованием ацетоацетил-АБП с одновременным выделением СО 2 (С 1). Эту реакцию катализирует конденсирующий фермент-кетоацил-АБП-синтетаза. Отщепленный от малонил-АПБ СО 2 – это тот же самый СО 2 , который принимал участие в реакции карбоксилирования ацетил-АПБ. Таким образом, в результате реакции конденсации происходит образование из двух-(С 2) и трехуглеродных (С 3) компонентов четырехуглеродного соединения (С 4).

    Во второй реакции (2) – реакции восстановления, катализируемой -кетоацил-АПБ-редуктазой, ацетоацетил-АПБ превращается в-гидроксибутирил-АПБ. Восстанавливающим агентом служит НАДФН + Н + .

    В третьей реакции (3) цикла-дегидратации – от -гидроксибутирил-АПБ отщепляется молекула воды с образованием кротонил-АПБ. Реакция катлизируется-гидроксиацил-АПБ-дегидратазой.

    Четвертой (конечный) реакцией (4) цикла является восстановление кротонила-АПБ в бутирил-АПБ. Реакция идет под действием еноил-АПБ-редуктазы. Роль восстановителя здесь выполняет вторая молекула НАДФН + Н + .

    Далее цикл реакций повторяется. Допустим, что идет синтез пальмитиновой кислоты (С 16). В этом случае образование бутирил-АПБ завершается лишь первый из 7 циклов, в каждом из которых началом является присоединение молекулы молонил-АПБ (3) – реакция (5) к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется карбоксильная группа в виде СО 2 (С 1). Этот процесс можно представить в следующем виде:

    С 3 + С 2 С 4 + С 1 – 1цикл

    С 4 + С 3 С 6 + С 1 – 2 цикл

    С 6 + С 3 С 8 + С 1 –3 цикл

    С 8 + С 3 С 10 + С 1 – 4 цикл

    С 10 + С 3 С 12 + С 1 – 5 цикл

    С 12 + С 3 С 14 + С 1 – 6 цикл

    С 14 + С 3 С 16 + С 1 – 7 цикл

    Могут синтезироваться не только высшие насыщенные жирные кислоты, но и ненасыщенные. Мононенасыщенные жирные кислоты образуются из насыщенных в результате окисления (десатурации), катализуруемой ацил-КоА-оксигеназой. В отличие от растительных тканей ткани животных обладают весьма ограниченной способностью превращать насыщенные жирные кислоты в ненасыщенные. Установлено, что две наиболее распространенные мононенасыщенные жирные кислоты – пальмитоолеиновая и олеиновая – синтезируются из пальмитиновой и стеариновой кислот. В организме млекопитающих, в том числе и человека, не могут образовываться, например, из стеариновой кислоты (С 18:0) линолевая (С 18:2) и линоленовая (С 18:3) кислоты. Эти кислоты относятся к категории незаменимых жирных кислот. К незаменимым жирным кислотам относят также арахиновую кислоту (С 20:4).

    Наряду с десатурацией жирных кислот (образование двойных связей) происходит и их удлинение (элонгации). Причем, оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН+Н + .

    На рисунке 15 представлены пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации.

    Рисунок 15 – Схема превращения насыщенных жирных кислот

    в ненасыщенные

    Завершается синтез любой жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы. Например:

    Образовавшийся ацил-КоА является активной формой жирной кислоты.